Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 153: 106473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452573

RESUMEN

The incidence of hamstring muscle strain varies among muscles, suggesting that the mechanical stresses associated with elongation may differ among muscles. However, the passive mechanical properties of whole human muscles have rarely been directly measured and clarified. This study aimed to clarify the stress-strain relationship of the hamstring muscles using a soft-embalmed Thiel cadaver. The long heads of the biceps femoris (BFlh), semimembranosus (SM), and semitendinosus (ST) muscles were dissected from eight cadavers. The proximal and distal hamstring tendons were affixed to the mechanical testing machine. Slack length was defined as the muscle length at the initial loading point detected upon the application of a tensile load. Muscle length was measured using a tape measure, and the anatomical cross-sectional area (ACSA) of the muscle was measured at the proximal and distal sites using B-mode ultrasonography. In the loading protocol, the muscle was elongated from its slack length to a maximum of 8% strain at an average rate of 0.83 L0/s, and the amount of displacement and tensile load were measured for each muscle. Further, the strain (%, displacement/slack muscle length) and stress (kPa, tensile load/ACSA) were calculated to evaluate the mechanical properties. Two-way repeated-measures analysis of variance (ANOVA) was used to compare stress changes with increasing muscle strain. A significant interaction between the muscle and strain factors was observed with respect to stress. Post-hoc tests revealed higher stresses in the BFlh and SM than in ST after 3% strain (P < 0.01). However, no significant differences were observed between the BFlh and SM groups. At 8% strain, the BFlh, SM, and ST exhibited stresses of 63.7 ± 12.1, 53.7 ± 23.2, and 21.0 ± 11.9 kPa, respectively. The results indicate that the stress changes associated with muscle strain differed among muscles. In particular, the stress applied to the three muscles at the same strain was found to be higher in the BFlh and SM. Thus, these findings suggest that increased mechanical stress during elongation may contribute to the frequent occurrence of muscle strain in BFlh and SM.


Asunto(s)
Músculos Isquiosurales , Humanos , Músculo Esquelético/fisiología , Cadáver , Ultrasonografía , Análisis de Varianza
3.
Arch Gerontol Geriatr ; 117: 105256, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37951029

RESUMEN

BACKGROUND: Static stretching has been demonstrated to improve the health of older adults. One of its goals is to decrease passive stiffness of the muscle-tendon unit (MTU) and/or muscles. Decreased passive stiffness in older adults could increase the range of motion and movement efficiency. Herein, we conducted a meta-analysis of the acute effects of static stretching on passive stiffness in older adults as well as a meta-analysis of differences in these effects between older and young adults. BACKGROUND: PubMed, Web of Science, and EBSCO were searched for studies published before June 28, 2023. Manual searches were performed to identify additional studies. All included studies were critically reviewed by five authors. Meta-analyses of muscle and tendon injuries were performed using a random effect model. Of 4643 identified studies, 6 studies were included in the systematic review. RESULTS: The main meta-analysis in older adults showed that static stretching could decrease the passive stiffness of the MTU or muscles (effect size, 0.55; 95 % confidence interval, 0.27 to 0.84; p < 0.01; and I2 = 0.0 %). Moreover, for the comparison between young and old adults, three studies were included in the meta-analysis. The results revealed no significant difference in the effects of static stretching interventions on stiffness between older and young adults (effect size, 0.136; 95 % confidence interval, -0.301 to 0.5738; p = 0.541; and I2 = 17.4 %). Static stretching could decrease the passive stiffness of the MTU and/or muscles in older adults to a small magnitude, and the effects were comparable between older and young adults.


Asunto(s)
Ejercicios de Estiramiento Muscular , Humanos , Anciano , Torque , Tendones/fisiología , Rango del Movimiento Articular/fisiología , Músculo Esquelético/fisiología
4.
Sci Rep ; 13(1): 9510, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308569

RESUMEN

The present study aims to assess the effect of the hip flexion angle on the shear modulus of the adductor longus (AL) muscle associated with passive hip abduction and rotation. Sixteen men participated in the study. For the hip abduction task, the hip flexion angles used were - 20, 0, 20, 40, 60, and 80°, and the hip abduction angles were 0, 10, 20, 30, and 40°. For the hip rotation task, the hip flexion angles used were - 20, 0, 20, 40, 60, and 80°, hip abduction angles were 0 and 40°, and hip rotation angles were 20° internal rotation, 0° rotation, and 20° external rotation. The shear modulus at 20° extension was significantly higher than that at 80° flexion for the 10, 20, 30 and 40° hip abduction (i.e., P < 0.05). The shear modulus at 20° internal rotation and 20° extension was significantly higher than that at 0° rotation and 20° external rotation, regardless of the hip abduction angle (i.e., P < 0.05). The mechanical stress of the AL muscle associated with hip abduction was higher in the extended position. Furthermore, the mechanical stress could increase with internal rotation only at the hip-extended position.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Gastrópodos , Masculino , Animales , Humanos , Articulación de la Cadera , Rotación , Músculos
5.
J Med Ultrason (2001) ; 50(3): 275-283, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37170041

RESUMEN

PURPOSE: Assessing muscle flexibility and architecture is important for hamstring strain injury (HSI) prevention. We investigated the relationship between shear modulus and passive force in hamstring muscles at different sites and the effect of muscle architecture on the slope of the shear modulus-passive force using shear wave elastography (SWE). METHODS: The biceps femoris long head (BFlh), semitendinosus (ST), and semimembranosus (SM) muscles were dissected from nine Thiel-embalmed cadavers and fixed to a custom-made mechanical testing machine. Calibrated weights (0-1800 g) were applied gradually in 150-g increments. The shear modulus and anatomical cross-sectional area (ACSA) were measured at proximal, central, and distal points using SWE. The muscle mass and length were measured before the loading test. The shear modulus-passive load relationship of each tested muscle region was analyzed by fitting a least-squares regression line. The increase in shear modulus slope per unit load was calculated and compared between the muscles before and after normalization by the muscle mass, length, and ACSA. RESULTS: The shear modulus and passive force for all hamstring muscles in each region showed a statistically significant linear correlation. Furthermore, the increase in shear modulus slope was greater for BFlh and ST than for SM (P < 0.05), but after normalization by the muscle length and ACSA, there were no significant differences among the muscles. CONCLUSION: The local mechanical properties of individual hamstring muscles can be indirectly estimated using SWE, and the slope of increase in shear modulus reflects characteristics of the muscle architecture.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Músculos Isquiosurales , Humanos , Músculos Isquiosurales/diagnóstico por imagen , Músculos Isquiosurales/fisiología , Módulo de Elasticidad , Cadáver , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología
6.
J Ultrasound ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36749499

RESUMEN

INTRODUCTION: Intramuscular heterogeneity exists in the shear modulus of the rectus femoris (RF) muscle. However, the underlying heterogeneity mechanisms are not entirely understood. Previous research has reported that detachment of superficial tissues reduces the shear modulus by 50%. The aim of this study was to examine the effects of the skin, deep fascia, and intermuscular connections on the shear modulus of the RF at multiple sites. MATERIALS AND METHODS: Eleven donors were fixed using the Thiel method. Measurements were performed at 0°, 60°, and 120° knee flexion in a neutral hip position. Tissue processing was performed under four conditions: superficial tissue (CONT), skin off (SKIN), deep fascia detachment (FASC), and intermuscular connections detachment (ALL). The shear modulus at the proximal, central, and distal regions were measured using ultrasound shear wave elastography. The study was approved by the Sapporo Medical University Ethical Committee. RESULTS: Three-way ANOVA revealed no significant interaction between treatment, site, and angle (P = 0.156), treatment and angle (P = 0.067), or site and angle (P = 0.441). There was a significant effect of treatment (P < 0.001), site (P = 0.010), and angle (P < 0.001) and interaction between treatment and site (P < 0.001). The proximal shear modulus was greater than the central for CONT. There were no significant differences between the measurement sites for SKIN. The distal shear modulus was greater than the proximal for FASC. The distal shear modulus was also greater than the proximal and central for ALL. CONCLUSIONS: Intramuscular regional differences that influence superficial tissue and intermuscular connections of RF elasticity heterogeneity were observed.

7.
Curr Res Physiol ; 5: 429-435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466149

RESUMEN

This study examined the effect of chest mobilization on intercostal (IC) muscle stiffness using the IC muscle shear modulus. Sixteen healthy young men participated on two days with a minimum of 24 h between the stretching and control conditions (SC and CC). The tasks were resting breathing and deep breathing. The IC muscle shear modulus and muscle activity and rib cage circumference were measured before and after each condition. In the SC, IC stretching was performed for 1 min x 5 sets. In the CC, resting breathing, in a sitting position, was performed for 5 min. In the SC, the IC muscle shear modulus decreased significantly (p < 0.05) at maximum inspiration in the deep breathing task, but there was no significant difference in the CC pre- and post-intervention. The results suggest that IC muscle stretching decreases IC muscle stiffness and improves muscle flexibility and that the IC muscle shear modulus may measure the effectiveness of chest mobilization.

8.
Clin Anat ; 35(7): 867-872, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35393703

RESUMEN

We investigated the shear modulus-passive force relationship in the hip adductor longus (AL) muscles of human cadavers and explored the effect of muscle architecture on the elastic properties of the AL muscle using shear wave elastography (SWE). Nine AL muscles were harvested from a soft, embalmed cadaver. The AL muscles were affixed to a custom-built device comprising two clamps, a pulley, and a cable to provide passive loads, which were increased from 0 to 600 g in 60-g increments. The shear modulus of the AL muscle was measured in the proximal (Pro), middle (Mid), and distal (Dis) regions. The masses and anatomical cross-sectional areas (ACSAs) of the AL muscles were measured. The shear modulus-passive load relationship of each tested muscle region was analyzed by fitting a least-squares regression line. Moreover, the rate of increase in the shear modulus per unit load (s) was calculated. The shear modulus and passive force were linearly correlated for all AL muscles in each region (p < 0.01). The mean coefficients of determination (R2 ) for Pro, Mid, and Dis were 0.989, 0.986, and 0.982, respectively. The rate of increase in the shear modulus per unit load significantly correlated with the reciprocal of the muscle mass (r = 0.77, p = 0.02) and ACSA (r = 0.43, p = 0.03). Shear wave elastography can be used as an indirect measure of passive force in any region of the AL muscle. Additionally, the rate of increase in the shear modulus per unit load could be associated with muscle architectural parameters.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Ingle , Módulo de Elasticidad , Ingle/diagnóstico por imagen , Humanos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Dolor
9.
Sports Med Int Open ; 2(6): E200, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30574539

RESUMEN

[This corrects the article DOI: 10.1055/a-0733-6957.].

10.
Sports Med Int Open ; 2(6): E163-E170, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30539134

RESUMEN

The purpose of this study was to investigate differences in the acute effects of passive knee extension (PKE) and active knee extension (AKE) stretching on the shear elastic modulus of the hamstrings. In 20 healthy men, maximum knee extension (maximum range of motion [ROM]) and shear elastic modulus of the hamstrings (biceps femoris long head, semitendinosus, semimembranosus) were measured before (Pre) and after (Post) AKE and PKE stretching. The maximum ROM during stretching was measured. In both stretching methods, maximum ROM increased and the shear elastic modulus decreased (p<0.01), but no difference was found between the procedures. No significant difference was observed in the maximum ROM during stretching between the procedures (p=0.06). The shear elastic modulus was significantly lower in the biceps femoris long head and semimembranosus than in the semitendinosus muscle (p<0.05). Static stretching with PKE and AKE stretching showed an increase in maximum ROM and a decrease in hamstring elasticity, but no difference was found between the methods. Both stretching protocols were effective for reducing elasticity of the biceps femoris long head and semimembranosus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...