Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Plants ; 9(8): 1207-1220, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37474781

RESUMEN

Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243 ky (thousand years). Mediterranean populations were founded ~44 kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19 kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.


Asunto(s)
Ecosistema , Zosteraceae , Zosteraceae/genética , Canadá , Filogeografía , Océanos y Mares
3.
Mar Pollut Bull ; 185(Pt B): 114343, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36410196

RESUMEN

Marine organisms ingest microplastics directly from water and indirectly from food sources. Ingesting microplastics can lead to the accumulation of plastic-derived chemicals. However, the relative contributions of the two exposure routes to the accumulation of plastic-derived chemicals in organisms are unknown. Using microplastics containing two brominated flame retardants (BFRs; BDE209 and DBDPE) and three UV stabilizers (UVSs; UV-234, UV-327, and BP-12), we performed exposure experiments to compare chemical accumulation patterns in fish (Myoxocephalus brandti) between exposure from water and prey (Neomysis spp.). We found significantly higher concentrations of BFRs in fish fed microplastic-contaminated prey than fish exposed to microplastics in the water. However, we observed similar concentrations of UVSs in fish exposed to both sources. As BFRs are more hydrophobic than UVSs, the differences may reflect the hydrophobic nature of the additives. Our findings indicate that both exposure routes are crucial to understanding the accumulation of plastic additives in fish.


Asunto(s)
Retardadores de Llama , Microplásticos , Animales , Plásticos , Peces , Agua
4.
PeerJ ; 10: e14017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275465

RESUMEN

Background: Seagrass beds are essential habitats in coastal ecosystems, providing valuable ecosystem services, but are threatened by various climate change and human activities. Seagrass monitoring by remote sensing have been conducted over past decades using satellite and aerial images, which have low resolution to analyze changes in the composition of different seagrass species in the meadows. Recently, unmanned aerial vehicles (UAVs) have allowed us to obtain much higher resolution images, which is promising in observing fine-scale changes in seagrass species composition. Furthermore, image processing techniques based on deep learning can be applied to the discrimination of seagrass species that were difficult based only on color variation. In this study, we conducted mapping of a multispecific seagrass bed in Saroma-ko Lagoon, Hokkaido, Japan, and compared the accuracy of the three discrimination methods of seagrass bed areas and species composition, i.e., pixel-based classification, object-based classification, and the application of deep neural network. Methods: We set five benthic classes, two seagrass species (Zostera marina and Z. japonica), brown and green macroalgae, and no vegetation for creating a benthic cover map. High-resolution images by UAV photography enabled us to produce a map at fine scales (<1 cm resolution). Results: The application of a deep neural network successfully classified the two seagrass species. The accuracy of seagrass bed classification was the highest (82%) when the deep neural network was applied. Conclusion: Our results highlighted that a combination of UAV mapping and deep learning could help monitor the spatial extent of seagrass beds and classify their species composition at very fine scales.


Asunto(s)
Aprendizaje Profundo , Algas Marinas , Zosteraceae , Humanos , Ecosistema , Dispositivos Aéreos No Tripulados
5.
Proc Natl Acad Sci U S A ; 119(32): e2121425119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914147

RESUMEN

Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.


Asunto(s)
Ecosistema , Zosteraceae , Aclimatación , Animales , Evolución Biológica , Biomasa , Cadena Alimentaria , Invertebrados , Zosteraceae/genética
6.
PeerJ ; 10: e13705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35915753

RESUMEN

This study aims to examine the spatial variation of diatom abundance and composition along the nearshore areas of Biwase Bay and Hamanaka Bay, eastern Hokkaido. Terrestrial input via Kiritappu Wetland is expected to affect variation and composition differently depending on the position of the two bays. We conducted an oceanographic survey in June 2014 to measure seawater temperature, salinity, colored dissolved organic matter (CDOM) absorption, nutrient concentrations, and total and size-fractionated chlorophyll (Chl) a concentration at 11 stations of the shallowest (<5 m) parts of the bays. These were grouped into four areas (Areas 1 and 2 in Biwase Bay, and Areas 3 and 4 in Hamanaka Bay) based on the distance of the location from the wetland outlet (nearest in Area 1 to the farthest in Area 4). Diatoms are the major primary producers in the water column. Therefore, we also determined genus level cell abundance and diversity of diatoms to compare similarity among areas. Sea surface temperature was the lowest at Area 4, whereas sea surface salinity was the lowest at Area 1. The contribution of CDOM absorption, an indicator of wetland-influenced river discharge, and silica concentration was highest at Area 1. Total amount of nitrite and nitrate concentrations was the highest at Area 4. Total amount of Chl a concentration was also lowest in Area 1. Our size-fractionated Chl a results revealed that while the size composition of phytoplankton varied among areas, micro-sized (>10 µm) phytoplankton were predominant in Area 4. Finally, diatom composition at the genus level differed greatly among areas. Pennate diatoms were predominant in Areas 1 and 2, but centric diatoms dominated in Areas 3 and 4. Our results suggested great spatial variability in oceanographic conditions among areas, with less influence of wetland and more influence of Coastal Oyashio Water based on distance from the wetland outlet. Diatom composition showed geographical division between Biwase and Hamanaka Bays.


Asunto(s)
Diatomeas , Bahías , Japón , Estaciones del Año , Clorofila A , Agua
7.
Proc Biol Sci ; 289(1969): 20211762, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35193403

RESUMEN

While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (Zostera marina) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.


Asunto(s)
Conducta Predatoria , Zosteraceae , Animales , Crustáceos , Ecosistema , Océanos y Mares
8.
Sci Total Environ ; 811: 151740, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34871693

RESUMEN

Microplastics are ubiquitous in the marine environment and studies on their effects on benthic filter feeders at least partly revealed a negative influence. However, it is still unclear whether the effects of microplastics differ from those of natural suspended microparticles, which constitute a common stressor in many coastal environments. We present a series of experiments that compared the effects of six-week exposures of marine mussels to two types of natural particles (red clay and diatom shells) to two types of plastic particles (Polymethyl Methacrylate and Polyvinyl Chloride). Mussels of the family Mytilidae from temperate regions (Japan, Chile, Tasmania) through subtropical (Israel) to tropical environments (Cabo Verde) were exposed to concentrations of 1.5 mg/L, 15 mg/L and 150 mg/L of the respective microparticles. At the end of this period, we found significant effects of suspended particles on respiration rate, byssus production and condition index of the animals. There was no significant effect on clearance rate and survival. Surprisingly, we observed only small differences between the effects of the different types of particles, which suggests that the mussels were generally equally robust towards exposure to variable concentrations of suspended solids regardless of whether they were natural or plastic. We conclude, that microplastics and suspended solids elicit similar effects on the tested response variables, and that both types of microparticles mainly cause acute responses rather than more persistent carry-over effects.


Asunto(s)
Mytilidae , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Alimentos Marinos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
9.
Sci Rep ; 11(1): 16073, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373494

RESUMEN

Long-term patterns in trajectories of natural communities provide insights into ecological resilience, but their assessment requires long-term census data. We analyzed 16-year census data for intertidal communities from 30 rocky shores along Japan's Pacific coast to assign community change to four possible trajectories (stable, reversible, abrupt, or linear) representing different aspects of ecological resilience, and to estimate multiple metrics of temporal invariability (species richness, species composition, and community abundance). We examined (1) how the prevalence of the four trajectories differs among regions, (2) how the features (model coefficients) of each trajectory vary among regions, and (3) how the temporal invariabilities differ among trajectories and regions. We found that the stable trajectory was the most common. Its features differed among regions, with a faster recovery to steady-state equilibrium in low-latitude regions. Furthermore, trajectories and temporal invariabilities both varied among regions, seemingly in association with the strength of ocean current fluctuations. Thus, the relationship between community temporal invariability and trajectory may be weak or absent, at least at the regional scale.

10.
Ecology ; 102(5): e03316, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33630346

RESUMEN

Human activities degrade and fragment coastal marine habitats, reducing their structural complexity and making habitat edges a prevalent seascape feature. Though habitat edges frequently are implicated in reduced faunal survival and biodiversity, results of experiments on edge effects have been inconsistent, calling for a mechanistic approach to the study of edges that explicitly includes indirect and interactive effects of habitat alteration at multiple scales across biogeographic gradients. We used an experimental network spanning 17 eelgrass (Zostera marina) sites across the Atlantic and Pacific oceans and the Mediterranean Sea to determine (1) if eelgrass edges consistently increase faunal predation risk, (2) whether edge effects on predation risk are altered by habitat degradation (shoot thinning), and (3) whether variation in the strength of edge effects among sites can be explained by biogeographical variability in covarying eelgrass habitat features. Contrary to expectations, at most sites, predation risk for tethered crustaceans (crabs or shrimps) was lower along patch edges than in patch interiors, regardless of the extent of habitat degradation. However, the extent to which edges reduced predation risk, compared to the patch interior, was correlated with the extent to which edges supported higher eelgrass structural complexity and prey biomass compared to patch interiors. This suggests an indirect component to edge effects in which the impact of edge proximity on predation risk is mediated by the effect of edges on other key biotic factors. Our results suggest that studies on edge effects should consider structural characteristics of patch edges, which may vary geographically, and multiple ways that humans degrade habitats.


Asunto(s)
Conducta Predatoria , Zosteraceae , Animales , Biodiversidad , Ecosistema , Humanos , Océano Pacífico
11.
J Fish Biol ; 99(1): 131-142, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33595112

RESUMEN

The feeding ecology of scarinine parrotfishes on tropical coral reefs has received considerable attention in the past few decades; nonetheless, relatively few studies have been conducted in high-latitude reefs. Among the Indo-Pacific Scarus species, Scarus ovifrons is unique, being largely restricted to the warm temperate waters of Japan. Nonetheless, there is very little information available on the feeding ecology of this species. In this study, the authors used acoustic telemetry to detect the diel vertical movement patterns of S. ovifrons, video survey to detect its feeding depths and substrata and focal follow survey and genetic analysis to identify algae composition on the feeding scars at Kashiwajima Island, southwestern Japan (32° 46' N, 132° 38' E). Acoustic telemetry revealed that S. ovifrons spent most of its time in shallow water (<10 m) during the day and slept in deeper water (10-15 m) at night. Video and focal follow surveys revealed that most fishes of various sizes regularly took bites on epilithic algae and detrital materials on rocky substrata at depths of <10 m, but large fishes (>40 cm total length) sometimes took bites directly on live corals (Acropora solitaryensis) at the 5 m depth zone where live tabular corals dominated the benthos. Molecular phylogenetic analyses revealed that epilithic algae collected from feeding scars were mainly composed of Rhodophyta, and coralline algae were less often targeted. Overall, this study revealed that S. ovifrons feeds mostly at depths <10 m, and the feeding algae substrata of the species are similar to those of tropical coral reef parrotfishes.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Conducta Alimentaria , Peces , Japón , Filogenia
12.
ISME J ; 15(6): 1668-1679, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33479490

RESUMEN

Invasive species are co-introduced with microbiota from their native range and also interact with microbiota found in the novel environment to which they are introduced. Host flexibility toward microbiota, or host promiscuity, is an important trait underlying terrestrial plant invasions. To test whether host promiscuity may be important in macroalgal invasions, we experimentally simulated an invasion in a common garden setting, using the widespread invasive macroalga Agarophyton vermiculophyllum as a model invasive seaweed holobiont. After disturbing the microbiota of individuals from native and non-native populations with antibiotics, we monitored the microbial succession trajectories in the presence of a new source of microbes. Microbial communities were strongly impacted by the treatment and changed compositionally and in terms of diversity but recovered functionally by the end of the experiment in most respects. Beta-diversity in disturbed holobionts strongly decreased, indicating that different populations configure more similar -or more common- microbial communities when exposed to the same conditions. This decline in beta-diversity occurred not only more rapidly, but was also more pronounced in non-native populations, while individuals from native populations retained communities more similar to those observed in the field. This study demonstrates that microbial communities of non-native A. vermiculophyllum are more flexibly adjusted to the environment and suggests that an intraspecific increase in host promiscuity has promoted the invasion process of A. vermiculophyllum. This phenomenon may be important among invasive macroalgal holobionts in general.


Asunto(s)
Microbiota , Rhodophyta , Algas Marinas , Humanos , Especies Introducidas
13.
Environ Pollut ; 273: 116468, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33477061

RESUMEN

Predators ingest microplastics directly from the environment and indirectly via trophic transfer, yet studies have not investigated the contribution of each pathway to microplastic ingestion in fish. We assessed the relative importance of the two exposure routes using mysids (Neomysis spp.) and a benthic fish (Myoxocephalus brandti) as a model prey-predator system. We first exposed the mysids to fluorescent polyethylene beads (27-32 µm) at concentrations of 200 and 2000 µg/L. We then exposed the fish to water containing the same concentrations of polyethylene beads or to nine mysids pre-exposed to polyethylene beads. We quantified the size and overall mass of polyethylene beads in mysids and in fish to assess polyethylene beads fragmentation by the mysids. Mysids ingested 2-3 more polyethylene beads from water containing the higher concentration, and fish ingested 3-11 times more polyethylene beads via trophic transfer than from the water column. The percentage of fragmented particles was higher in mysids and in fish fed bead-exposed mysids, suggesting that the mysids can fragment polyethylene beads. Our experiments demonstrate that trophic transfer is a major route of microplastic ingestion by fish and that prey such as mysids can fragment microplastics. Small particles can translocate from the digestive system into tissues and exert adverse physiological effects. Trophic transfer of microplastics may therefore pose more serious threats to organisms at higher trophic levels.

14.
Environ Pollut ; 268(Pt A): 115865, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33158615

RESUMEN

Microplastic ingestion has been widely documented in marine zooplankton, but the retention time of microplastics in their digestive gut are still poorly studied, especially among species from different climatic zones and marine habitats. This study evaluated the ingestion and gut retention time of four sizes of fluorescent microplastic beads (1.3, 7.3, 10.6, and 19.0 µm) in stage II naupliar larvae of nine barnacle species from different habitats (epibiotic on turtles, mangroves, coral reefs, and rocky shores) and climatic zones (subtropical/tropical and temperate). Microbeads were not lethal to all species (climatic zones/habitats) tested from the four sizes of non-fluorescent virgin microbeads (1.7, 6.8, 10.4 and 19.0 µm, each at concentrations 1, 10, 100, and 1000 beads mL-1). Gut retention time of microplastic beads in barnacle naupliar larvae significantly increased with decreasing size. Microbeads resided in digestive tracts generally 3-4 times longer in rocky shore and coral reef barnacles than in muddy shore and epibiotic ones. However, species from different climatic zone did not differ in retention time. Our results suggested nauplius larvae from rocky shore and coral reef barnacles appear to be more susceptible to the impacts of longer retained microplastics (e.g., toxic chemicals present on the surface).


Asunto(s)
Microbioma Gastrointestinal , Thoracica , Contaminantes Químicos del Agua , Animales , Ecosistema , Larva , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
15.
Mol Ecol ; 29(11): 2094-2108, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32408381

RESUMEN

Communities are shaped by scale dependent processes. To study the diversity and variation of microbial communities across scales, the invasive and widespread seaweed Agarophyton vermiculophyllum presents a unique opportunity. We characterized pro- and eukaryotic communities associated with this holobiont across its known distribution range, which stretches over the northern hemisphere. Our data reveal that community composition and diversity in the holobiont vary at local but also larger geographic scales. While processes acting at the local scale (i.e., within population) are the main structuring drivers of associated microbial communities, changes in community composition also depend on processes acting at larger geographic scales. Interestingly, the largest analysed scale (i.e., native and non-native ranges) explained variation in the prevalence of predicted functional groups, which could suggest a functional shift in microbiota occurred over the course of the invasion process. While high variability in microbiota at the local scale supports A. vermiculophyllum to be a generalist host, we also identified a number of core taxa. These geographically independent holobiont members imply that cointroduction of specific microbiota may have additionally promoted the invasion process.


Asunto(s)
Microbiota , Rhodophyta/microbiología , Algas Marinas/microbiología , Especies Introducidas , Microbiota/genética
16.
PLoS One ; 13(8): e0201791, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30086164

RESUMEN

Eelgrass (Zostera marina) forms extensive beds in coastal and estuarine environments and provides various ecosystem functions. The aboveground part of eelgrass provides habitats for other types of primary producers such as epiphytic microalgae and for epifaunal invertebrate grazers. Because of the different sizes, generation times and resource requirements, these different types of producers and consumers may be affected by different sets of biotic/abiotic factors over multiple spatial scales. We examined the spatial variations in three functional groups of eelgrass beds (eelgrass, epiphytic microalgae and epifaunal invertebrates) and the abiotic/biotic factors responsible for these variations in three lagoons with different environmental properties at the eastern region of Hokkaido Island, Japan. The spatial scale responsible for the variation in the biomasses of the three functional groups varied, where within-lagoon variation was important for eelgrass and epifauna but among-lagoon variation was important for microalgae. The environmental predictors for the observed spatial variations also differed among the different functional groups, with variation in eelgrass biomass related to depth, nutrient and salinity, epiphytes to water temperature, eelgrass biomass and water column chlorophyll and epifauna mainly to eelgrass biomass. These results revealed that the level of importance of among- and within-lagoon environmental gradients vary in the different functional groups of the eelgrass bed community. The large-scale variation in pelagic productivity, which is tightly related to the ocean current regimes, is likely responsible for the great among-lagoon variation in microalgae. The local variations in environmental factors such as salinity and nutrients, which change with alterations in terrestrial river inputs, are likely related to the great variations in eelgrass and epifauna within the ecosystem. The observed relationship of epifauna with eelgrass biomass indicates the importance of non-trophic plant-animal interactions because epifauna utilize eelgrass as habitat. We therefore emphasize the importance of evaluating spatial variations at multiple scales to further understand the functions of coastal and estuarine ecosystems.


Asunto(s)
Distribución Animal , Herbivoria , Invertebrados , Microalgas , Zosteraceae , Animales , Biomasa , Clorofila , Ecosistema , Japón , Microalgas/crecimiento & desarrollo , Océanos y Mares , Salinidad , Estaciones del Año , Análisis Espacial , Temperatura , Zosteraceae/crecimiento & desarrollo
17.
Evol Appl ; 11(5): 781-793, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29875819

RESUMEN

The rapid evolution of non-native species can facilitate invasion success, but recent reviews indicate that such microevolution rarely yields expansion of the climatic niche in the introduced habitats. However, because some invasions originate from a geographically restricted portion of the native species range and its climatic niche, it is possible that the frequency, direction, and magnitude of phenotypic evolution during invasion have been underestimated. We explored the utility of niche shift analyses in the red seaweed Gracilaria vermiculophylla, which expanded its range from the northeastern coastline of Japan to North America, Europe, and northwestern Africa within the last 100 years. A genetically informed climatic niche shift analysis indicates that native source populations occur in colder and highly seasonal habitats, while most non-native populations typically occur in warmer, less seasonal habitats. This climatic niche expansion predicts that non-native populations evolved greater tolerance for elevated heat conditions relative to native source populations. We assayed 935 field-collected and 325 common-garden thalli from 40 locations, and as predicted, non-native populations had greater tolerance for ecologically relevant extreme heat (40°C) than did Japanese source populations. Non-native populations also had greater tolerance for cold and low-salinity stresses relative to source populations. The importance of local adaptation to warm temperatures during invasion was reinforced by evolution of parallel clines: Populations from warmer, lower-latitude estuaries had greater heat tolerance than did populations from colder, higher-latitude estuaries in both Japan and eastern North America. We conclude that rapid evolution plays an important role in facilitating the invasion success of this and perhaps other non-native marine species. Genetically informed ecological niche analyses readily generate clear predictions of phenotypic shifts during invasions and may help to resolve debate over the frequency of niche conservatism versus rapid adaptation during invasion.

18.
PLoS One ; 13(5): e0197753, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29795609

RESUMEN

Coastal fisheries are in decline worldwide, and aquaculture has become an increasingly popular way to meet seafood demand. While finfish aquaculture can have substantial adverse effects on coastal ecosystems due mostly to necessary feed inputs, bivalves graze on natural phytoplankton and are often considered for their positive ecosystem services. We conducted two independent studies to investigate the effects of long-line Crassostrea gigas oyster aquaculture on Zostera marina seagrass beds and associated epibiont communities in Akkeshi-ko estuary, Japan. Results from both studies yielded no evidence of an effect of oyster aquaculture on the morphology, density, or biomass of Z. marina, but significant differences were apparent in the epibiont community. Reference seagrass beds located away from aquaculture had higher seagrass epiphyte loads and higher abundances of amphipods. Conversely, seagrass beds below aquaculture lines had higher sessile polychaete biomass and higher isopod abundances. Our results suggest that the presence of oyster aquaculture may have indirect effects on seagrass by changing epibiont community composition and relative abundances of species. One proposed mechanism is that cultured oysters feed on epiphytic diatoms and epiphyte propagules before they can settle on the seagrass, which reduces epiphyte loads and influences subsequent faunal settlement. If carefully implemented and monitored, long-line oyster aquaculture may be a sustainable option to consider as bivalve aquaculture expands to meet global seafood demand, but further work is needed to fully assess and generalize the community-level effects on seagrass epibionts.


Asunto(s)
Ecosistema , Ostreidae/crecimiento & desarrollo , Zosteraceae/crecimiento & desarrollo , Animales , Acuicultura , Biomasa , Estuarios , Japón
19.
Ecology ; 99(1): 29-35, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29083472

RESUMEN

Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions.


Asunto(s)
Conducta Predatoria , Zosteraceae , Animales , Biodiversidad , Ecosistema , Temperatura
20.
Mar Pollut Bull ; 134: 145-151, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28938998

RESUMEN

Seagrasses, marine flowering plants, provide a wide range of ecosystem services, defined here as natural processes and components that directly or indirectly benefit human needs. Recent research has shown that there are still many gaps in our comprehension of seagrass ecosystem service provision. Furthermore, there seems to be little public knowledge of seagrasses in general and the benefits they provide. This begs the questions: how do we move forward with the information we have? What other information do we need and what actions do we need to take in order to improve the situation and appreciation for seagrass? Based on the outcomes from an international expert knowledge eliciting workshop, three key areas to advance seagrass ecosystem service research were identified: 1) Variability of ecosystem services within seagrass meadows and among different meadows; 2) Seagrass ecosystem services in relation to, and their connection with, other coastal habitats; and 3) Improvement in the communication of seagrass ecosystem services to the public. Here we present ways forward to advance seagrass ecosystem service research in order to raise the profile of seagrass globally, as a means to establish more effective conservation and restoration of these important coastal habitats around the world.


Asunto(s)
Alismatales , Conservación de los Recursos Hídricos/métodos , Ecosistema , Biología Marina/métodos , Organismos Acuáticos , Humanos , Océanos y Mares , Opinión Pública
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...