Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insect Biochem Mol Biol ; 159: 103989, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37453662

RESUMEN

Sexual dimorphisms of the brain play essential roles in successful reproduction. Silkmoth Bombyx mori exhibits extensive sexual differences in sexual behavior, as well as their morphology. Although the neural circuits that transmit information about sex pheromone in the male brain are extensively analyzed, the molecular mechanisms that regulate their development are still elusive. In the present study, we focused on the silkmoth ortholog of fruitless (fru) as a candidate gene that regulates sexual dimorphisms of the brain. fru transcripts were expressed from multiple promoters in various tissues, and brain-specific transcripts were sex-specifically spliced, in a manner similar to Drosophila. Interestingly, fru was highly expressed in the adult female brain and the male larval testis. Analysis of CRISPR/Cas9-mediated fru knockout strains revealed that fru plays important roles in survival during late larval and pupal stages, testis development, and adult sexual behavior. fru mutant males exhibited highly reduced levels of courtship and low copulation rate, indicating that fru plays significant roles in the sexual behavior of silkmoths, although it is not absolutely necessary for copulation. In the fru mutant males, sexually dimorphic pattern of the odorant receptor expression was impaired, possibly causing the defects in courtship behavior. These results provide important clues to elucidate the development of sexual dimorphisms of silkmoth brains, as well as the evolution of fruitless gene in insects.


Asunto(s)
Bombyx , Proteínas de Drosophila , Masculino , Femenino , Animales , Bombyx/genética , Bombyx/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cortejo , Factores de Transcripción/genética , Conducta Sexual Animal/fisiología , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/genética
2.
Insect Biochem Mol Biol ; 129: 103518, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33421546

RESUMEN

Sexual differences in behavior are generated by sexually dimorphic neural circuits in animals. In insects, a highly conserved sex-determining gene doublesex (dsx) plays essential roles in the development of sexual dimorphisms. In the present study, to elucidate the neural basis of sexual differences in behaviors of silkmoth Bombyx mori, we investigated Bombyx mori dsx (Bmdsx) expression in the brains through development. In the brain, Bmdsx was differentially expressed in sex- and developmental stage-dependent manners. BmDSX protein-expressing cells were located in the dorsomedial region of the pupal and adult brains, and constituted two and one neural clusters in males and females, respectively. The number of BmDSX-positive cells was developmentally regulated and peaked at the early to middle pupal stages, suggesting that the sexually dimorphic neural circuits are established during this period. The detection of a neural activity marker protein BmHR38 suggested that the BmDSX-positive cells are not active during sexual behavior in both male and female moths, even though the cells in the vicinity of the BmDSX-positive cell clusters are active. These results imply that Bmdsx plays roles in the development of sexually dimorphic neural circuits, but the neural circuits are not related to sexual behavior in silkmoths.


Asunto(s)
Bombyx/citología , Proteínas de Insectos/metabolismo , Neuronas/metabolismo , Caracteres Sexuales , Animales , Bombyx/metabolismo , Encéfalo/metabolismo , Femenino , Larva/metabolismo , Masculino , Pupa/metabolismo
3.
Microvasc Res ; 120: 90-93, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30056058

RESUMEN

We have previously shown that albuminuria and renal levels of advanced glycation end products (AGEs), receptor for AGEs (RAGE), and oxidative stress are suppressed in dipeptidyl peptidase-4 (DPP-4)-deficient diabetic rats, thus suggesting the crosstalk between AGE-RAGE axis and DPP-4 in experimental diabetic nephropathy. Therefore, we examined here the role of DPP-4 in AGE-evoked inflammatory reactions in human proximal tubular cells. Proteins were extracted from proximal tubular cells, and conditioned medium was collected, both of which were subjected to western blot analysis using anti-DPP-4 antibody. RAGE-aptamer was prepared using a systemic evolution of ligands by exponential enrichment. NF-κB p65 and monocyte chemoattractant protein-1 (MCP-1) gene expression was analyzed by reverse transcription-polymerase chain reaction. AGEs significantly increased DPP-4 expression and soluble DPP-4 production by tubular cells, the latter of which was attenuated by RAGE-aptamer or an anti-oxidant, N-acetylcysteine. AGEs or DPP-4 up-regulated NF-κB p65 or MCP-1 mRNA levels in tubular cells, which were suppressed by linagliptin, an inhibitor of DPP-4. AGEs stimulated NF-κB p65 gene expression in tubular cells isolated from control rats, but not from DPP-4-deficient rats. Our present results suggest that the AGE-RAGE-mediated oxidative stress could evoke inflammatory reactions in proximal tubular cells via autocrine production of DPP-4.


Asunto(s)
Comunicación Autocrina/efectos de los fármacos , Dipeptidil Peptidasa 4/metabolismo , Productos Finales de Glicación Avanzada/toxicidad , Mediadores de Inflamación/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Albúmina Sérica Bovina/toxicidad , Animales , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dipeptidil Peptidasa 4/deficiencia , Dipeptidil Peptidasa 4/genética , Humanos , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Ratas Transgénicas , Receptor para Productos Finales de Glicación Avanzada/agonistas , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...