Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Arch Microbiol ; 206(1): 4, 2023 Nov 23.
Article En | MEDLINE | ID: mdl-37994962

Streptococcus pyogenes harboring an FCT type 3 genomic region display pili composed of three types of pilins. In this study, the structure of the base pilin FctB from a serotype M3 strain (FctB3) was determined at 2.8 Å resolution. In accordance with the previously reported structure of FctB from a serotype T9 strain (FctB9), FctB3 was found to consist of an immunoglobulin-like domain and proline-rich tail region. Data obtained from structure comparison revealed main differences in the omega (Ω) loop structure and the proline-rich tail direction. In the Ω loop structure, a differential hydrogen bond network was observed, while the lysine residue responsible for linkage to growing pili was located at the same position in both structures, which indicated that switching of the hydrogen bond network in the Ω loop without changing the lysine position is advantageous for linkage to the backbone pilin FctA. The difference in direction of the proline-rich tail is potentially caused by a single residue located at the root of the proline-rich tail. Also, the FctB3 structure was found to be stabilized by intramolecular large hydrophobic interactions instead of an isopeptide bond. Comparisons of the FctB3 and FctA structures indicated that the FctA structure is more favorable for linkage to FctA. In addition, the heterodimer formation of FctB with Cpa or FctA was shown to be mediated by the putative chaperone SipA. Together, these findings provide an alternative FctB structure as well as insight into the interactions between pilin proteins.


Fimbriae Proteins , Lysine , Fimbriae Proteins/genetics , Fimbriae, Bacterial , Genomics , Proline
2.
Microbiol Immunol ; 67(7): 319-333, 2023 Jul.
Article En | MEDLINE | ID: mdl-37138376

Streptococcus pyogenes displays a wide variety of pili, which is largely dependent on serotype. A distinct subset of S. pyogenes strains that possess the Nra transcriptional regulator demonstrates thermoregulated pilus production. Findings obtained in the present study of an Nra-positive serotype M49 strain revealed involvement of conserved virulence factor A (CvfA), also referred to as ribonuclease Y (RNase Y), in virulence factor expression and pilus production, while a cvfA deletion strain showed reduced pilus production and adherence to human keratinocytes as compared with wild-type and revertant strains. Furthermore, transcript levels of pilus subunits and srtC2 genes were decreased by cvfA deletion, which was remarkable at 25°C. Likewise, both messenger RNA (mRNA) and protein levels of Nra were remarkably decreased by cvfA deletion. Whether the expression of other pilus-related regulators, including fasX and CovR, was subject to thermoregulation was also examined. While the mRNA level of fasX, which inhibits cpa and fctA translation, was decreased by cvfA deletion at both 37°C and 25°C, CovR mRNA and protein levels, as well as its phosphorylation level were not significantly changed, suggesting that neither fasX nor CovR is necessarily involved in thermosensitive pilus production. Phenotypic analysis of the mutant strains revealed that culture temperature and cvfA deletion had varied effects on streptolysin S and SpeB activities. Furthermore, bactericidal assay data showed that cvfA deletion decreased the rate of survival in human blood. Together, the present findings indicate that CvfA is involved in regulation of pilus production and virulence-related phenotypes of the serotype M49 strain of S. pyogenes.


Streptococcal Infections , Streptococcus pyogenes , Humans , Streptococcus pyogenes/metabolism , Ribonucleases/genetics , Ribonucleases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
3.
PLoS One ; 17(11): e0276293, 2022.
Article En | MEDLINE | ID: mdl-36350830

Members of the mitis group streptococci are the most abundant inhabitants of the oral cavity and dental plaque. Influenza A virus (IAV), the causative agent of influenza, infects the upper respiratory tract, and co-infection with Streptococcus pneumoniae is a major cause of morbidity during influenza epidemics. S. pneumoniae is a member of mitis group streptococci and shares many features with oral mitis group streptococci. In this study, we investigated the effect of viable Streptococcus oralis, a representative member of oral mitis group, on the infectivity of H1N1 IAV. The infectivity of IAV was measured by a plaque assay using Madin-Darby canine kidney cells. When IAV was incubated in growing culture of S. oralis, the IAV titer decreased in a time- and dose-dependent manner and became less than 100-fold, whereas heat-inactivated S. oralis had no effect. Other oral streptococci such as Streptococcus mutans and Streptococcus salivarius also reduced the viral infectivity to a lesser extent compared to S. oralis and Streptococcus gordonii, another member of the oral mitis group. S. oralis produces hydrogen peroxide (H2O2) at a concentration of 1-2 mM, and its mutant deficient in H2O2 production showed a weaker effect on the inactivation of IAV, suggesting that H2O2 contributes to viral inactivation. The contribution of H2O2 was confirmed by an inhibition assay using catalase, an H2O2-decomposing enzyme. These oral streptococci produce short chain fatty acids (SCFA) such as acetic acid as a by-product of sugar metabolism, and we also found that the inactivation of IAV was dependent on the mildly acidic pH (around pH 5.0) of these streptococcal cultures. Although inactivation of IAV in buffers of pH 5.0 was limited, incubation in the same buffer containing 2 mM H2O2 resulted in marked inactivation of IAV, which was similar to the effect of growing S. oralis culture. Taken together, these results reveal that viable S. oralis can inactivate IAV via the production of SCFAs and H2O2. This finding also suggests that the combination of mildly acidic pH and H2O2 at low concentrations could be an effective method to inactivate IAV.


Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Influenza A virus/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Streptococcus mitis , Streptococcus oralis , Viridans Streptococci/metabolism , Streptococcus gordonii/metabolism , Acids/metabolism , Hydrogen-Ion Concentration
4.
Microbiol Immunol ; 66(12): 539-551, 2022 Dec.
Article En | MEDLINE | ID: mdl-36114681

Members of the oral mitis group streptococci including Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii are the most abundant inhabitants of human oral cavity and dental plaque, and have been implicated in infectious complications such as bacteremia and infective endocarditis. Oral mitis group streptococci are genetically close to Streptococcus pneumoniae; however, they do not produce cytolysin (pneumolysin), which is a key virulence factor of S. pneumoniae. Similar to S. pneumoniae, oral mitis group streptococci possess several cell surface proteins that bind to the cell surface components of host mammalian cells. S. sanguinis expresses long filamentous pili that bind to the matrix proteins of host cells. The cell wall-anchored nuclease of S. sanguinis contributes to the evasion of the neutrophil extracellular trap by digesting its web-like extracellular DNA. Oral mitis group streptococci produce glucosyltransferases, which synthesize glucan (glucose polymer) from sucrose of dietary origin. Neuraminidase (NA) is a virulent factor in oral mitis group streptococci. Influenza type A virus (IAV) relies on viral NA activity to release progeny viruses from infected cells and spread the infection, and NA-producing oral streptococci elevate the risk of IAV infection. Moreover, oral mitis group streptococci produce hydrogen peroxide (H2 O2 ) as a by-product of sugar metabolism. Although the concentrations of streptococcal H2 O2 are low (1-2 mM), they play important roles in bacterial competition in the oral cavity and evasion of phagocytosis by host macrophages and neutrophils. In this review, we intended to describe the diverse pathogenicity of oral mitis group streptococci.


Mouth , Humans
5.
Front Cell Infect Microbiol ; 12: 844000, 2022.
Article En | MEDLINE | ID: mdl-35846740

Streptococcus pneumoniae is a major cause of invasive diseases such as pneumonia, meningitis, and sepsis, with high associated mortality. Our previous molecular evolutionary analysis revealed that the S. pneumoniae gene bgaA, encoding the enzyme ß-galactosidase (BgaA), had a high proportion of codons under negative selection among the examined pneumococcal genes and that deletion of bgaA significantly reduced host mortality in a mouse intravenous infection assay. BgaA is a multifunctional protein that plays a role in cleaving terminal galactose in N-linked glycans, resistance to human neutrophil-mediated opsonophagocytic killing, and bacterial adherence to human epithelial cells. In this study, we performed in vitro and in vivo assays to evaluate the precise role of bgaA as a virulence factor in sepsis. Our in vitro assays showed that the deletion of bgaA significantly reduced the bacterial association with human lung epithelial and vascular endothelial cells. The deletion of bgaA also reduced pneumococcal survival in human blood by promoting neutrophil-mediated killing, but did not affect pneumococcal survival in mouse blood. In a mouse sepsis model, mice infected with an S. pneumoniae bgaA-deleted mutant strain exhibited upregulated host innate immunity pathways, suppressed tissue damage, and blood coagulation compared with mice infected with the wild-type strain. These results suggest that BgaA functions as a multifunctional virulence factor whereby it induces host tissue damage and blood coagulation. Taken together, our results suggest that BgaA could be an attractive target for drug design and vaccine development to control pneumococcal infection.


Pneumococcal Infections , Pneumonia, Pneumococcal , Sepsis , Animals , Bacterial Proteins/genetics , Blood Coagulation , Disease Models, Animal , Endothelial Cells/metabolism , Humans , Mice , Pneumococcal Infections/microbiology , Pneumococcal Vaccines , Streptococcus pneumoniae/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
6.
BMJ Case Rep ; 15(5)2022 May 24.
Article En | MEDLINE | ID: mdl-35609931

We report a rare case of intravascular large B-cell lymphoma (IVLBCL) with hypopituitarism and respiratory failure. A man in his 80s presented with hypotension and respiratory failure but was unsuccessfully treated for septic shock. Biological investigations were performed, and he was diagnosed with hypopituitarism due to insufficient secretion of anterior pituitary hormone. Although his condition temporarily improved following hormone replacement therapy, he eventually died of progressive respiratory failure. The lymphoma was only discovered during the autopsy, where it was observed to have spread to the pituitary gland and lung capillaries. Therefore, we concluded that the lymphoma had caused respiratory failure and hypopituitarism. The patient was thus diagnosed with IVLBCL posthumously. In conclusion, IVLBCL can cause hypopituitarism and respiratory failure due to pituitary and pulmonary capillary invasion by lymphoma cells.


Hypopituitarism , Lymphoma, Large B-Cell, Diffuse , Respiratory Insufficiency , Capillaries/pathology , Humans , Hypopituitarism/diagnosis , Hypopituitarism/etiology , Lung/pathology , Lymphoma, Large B-Cell, Diffuse/complications , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Respiratory Insufficiency/complications
7.
PLoS One ; 17(1): e0258283, 2022.
Article En | MEDLINE | ID: mdl-35041663

Staphylococcus epidermidis is a commensal bacterium in humans. To persist in the bacterial flora of the host, some bacteria produce antibacterial factors such as the antimicrobial peptides known as bacteriocins. In this study, we tried to isolate bacteriocin-producing S. epidermidis strains. Among 150 S. epidermidis isolates from the oral cavities of 287 volunteers, we detected two bacteriocin-producing strains, KSE56 and KSE650. Complete genome sequences of the two strains confirmed that they carried the epidermin-harboring plasmid pEpi56 and the nukacin IVK45-like-harboring plasmid pNuk650. The amino acid sequence of epidermin from KSE56 was identical to the previously reported sequence, but the epidermin synthesis-related genes were partially different. The prepeptide amino acid sequences of nukacin KSE650 and nukacin IVK45 showed one mismatch, but both mature peptides were entirely similar. pNuk650 was larger and had an additional seven ORFs compared to pIVK45. We then investigated the antibacterial activity of the two strains against several skin and oral bacteria and found their different activity patterns. In conclusion, we report the complete sequences of 2 plasmids coding for bacteriocins from S. epidermidis, which were partially different from those previously reported. Furthermore, this is the first report to show the complete sequence of an epidermin-carrying plasmid, pEpi56.


Staphylococcus epidermidis
8.
Microbiol Immunol ; 66(6): 253-263, 2022 Jun.
Article En | MEDLINE | ID: mdl-35088451

Secondary bacterial infection following influenza type A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Streptococcus pneumoniae has been identified as a predominant pathogen in secondary pneumonia cases that develop following influenza. Although IAV has been shown to enhance susceptibility to the secondary bacterial infection, the underlying mechanism of the viral-bacterial synergy leading to disease progression is complex and remains elusive. In this review, cooperative interactions of viruses and streptococci during co- or secondary infection with IAV are described. IAV infects the upper respiratory tract, therefore, streptococci that inhabit or infect the respiratory tract are of special interest. As many excellent reviews on the co-infection of IAV and S. pneumoniae have already been published, this review is intended to describe the unique interactions between other streptococci and IAV. Both streptococcal and IAV infections modulate the host epithelial barrier of the respiratory tract in various ways. IAV infection directly disrupts epithelial barriers, though at the same time the virus modifies the properties of infected cells to enhance streptococcal adherence and invasion. Mitis group streptococci produce neuraminidases, which promote IAV infection in a unique manner. The studies reviewed here have revealed intriguing mechanisms underlying secondary streptococcal infection following influenza.


Coinfection , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Streptococcal Infections , Coinfection/complications , Humans , Influenza, Human/complications , Streptococcal Infections/microbiology , Streptococcus pneumoniae
9.
Microbiol Immunol ; 66(3): 145-156, 2022 Mar.
Article En | MEDLINE | ID: mdl-34888908

Streptococcus mutans, a cariogenic pathogen, adheres to the tooth surface and forms a biofilm. Bacterial cell surface proteins are associated with adherence to substrates. Sortase A (SrtA) mediates the localization of proteins with an LPXTG motif-containing proteins to the cell surface by covalent binding to peptidoglycan. In S. mutans UA159, six SrtA-dependent proteins, SpaP, WapA, WapE, DexA, FruA, and GbpC, were identified. Although some of these proteins were characterized, a comprehensive analysis of the six proteins has not been reported. In this study, we constructed mutants deficient in each of these proteins and the SrtA-deficient mutant. The SrtA-deficient mutant showed drastically decreased binding to salivary components, biofilm formation, bacterial coaggregation activity, hydrophobicity, and cellular matrix binding (collagen type I, fibronectin, and laminin). The SpaP-deficient mutant showed significantly reduced binding to salivary components and partially increased coaggregation with Porphyromonas gingivalis, and decreased hydrophobicity, and collagen binding. The WapA-deficient mutant showed slightly decreased coaggregation with Fusobacterium nucleatum. Although the SrtA-deficient mutant showed drastically altered phenotypes, all SrtA-dependent protein-deficient mutants, except the SpaP-deficient mutant, did not show considerable alterations in binding to salivary components. These results indicate that the six proteins may coordinately contribute to these activities. In addition, using genomic data of 125 S. mutans strains, the amino acid sequences of each surface protein were compared and many variations were found among strains, which may affect the phenotype of cell surface proteins in S. mutans.


Aminoacyltransferases , Streptococcus mutans , Aminoacyltransferases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Membrane Proteins , Streptococcus mutans/genetics , Streptococcus mutans/metabolism
10.
Jpn Dent Sci Rev ; 57: 209-216, 2021 Nov.
Article En | MEDLINE | ID: mdl-34745393

Small regulatory RNAs (sRNAs) belong to a family of non-coding RNAs, and many of which regulate expression of genes via interaction with mRNA. The recent popularity of high-throughput next generation sequencers have presented abundant sRNA-related data, including sRNAs of several different oral bacterial species. Some sRNA candidates have been validated in terms of their expression and interaction with target mRNAs. Since the oral cavity is an environment constantly exposed to various stimuli, such as fluctuations in temperature and pH, and osmotic pressure, as well as changes in nutrient availability, oral bacteria require rapid control of gene expression for adaptation to such diverse conditions, while regulation via interactions of sRNAs with mRNA provides advantages for rapid adaptation. This review summarizes methods effective for identification and validation of sRNAs, as well as sRNAs identified to be associated with oral bacterial species, including cariogenic and periodontal pathogens, together with their confirmed and putative target genes.

11.
mBio ; 12(3): e0326920, 2021 06 29.
Article En | MEDLINE | ID: mdl-34061598

Influenza A virus (IAV) infection predisposes the host to secondary bacterial pneumonia, known as a major cause of morbidity and mortality during influenza virus epidemics. Analysis of interactions between IAV-infected human epithelial cells and Streptococcus pneumoniae revealed that infected cells ectopically exhibited the endoplasmic reticulum chaperone glycoprotein 96 (GP96) on the surface. Importantly, efficient pneumococcal adherence to epithelial cells was imparted by interactions with extracellular GP96 and integrin αV, with the surface expression mediated by GP96 chaperone activity. Furthermore, abrogation of adherence was gained by chemical inhibition or genetic knockout of GP96 as well as addition of RGD peptide, an inhibitor of integrin-ligand interactions. Direct binding of extracellular GP96 and pneumococci was shown to be mediated by pneumococcal oligopeptide permease components. Additionally, IAV infection induced activation of calpains and Snail1, which are responsible for degradation and transcriptional repression of junctional proteins in the host, respectively, indicating increased bacterial translocation across the epithelial barrier. Notably, treatment of IAV-infected mice with the GP96 inhibitor enhanced pneumococcal clearance from lung tissues and ameliorated lung pathology. Taken together, the present findings indicate a viral-bacterial synergy in relation to disease progression and suggest a paradigm for developing novel therapeutic strategies tailored to inhibit pneumococcal colonization in an IAV-infected respiratory tract. IMPORTANCE Secondary bacterial pneumonia following an influenza A virus (IAV) infection is a major cause of morbidity and mortality. Although it is generally accepted that preceding IAV infection leads to increased susceptibility to secondary bacterial infection, details regarding the pathogenic mechanism during the early stage of superinfection remain elusive. Here, we focused on the interaction of IAV-infected cells and Streptococcus pneumoniae, which revealed that human epithelial cells infected with IAV exhibit a cell surface display of GP96, an endoplasmic reticulum chaperon. Notably, extracellular GP96 was shown to impart efficient adherence for secondary infection by S. pneumoniae, and GP96 inhibition ameliorated lung pathology of superinfected mice, indicating it to be a useful target for development of therapeutic strategies for patients with superinfection.


Influenza A virus/pathogenicity , Influenza, Human/complications , Membrane Glycoproteins/genetics , Pneumonia, Bacterial/virology , Streptococcus pneumoniae/pathogenicity , Symptom Flare Up , A549 Cells , Animals , Bacterial Adhesion , Coinfection/complications , Coinfection/microbiology , Coinfection/virology , Epithelial Cells/microbiology , Female , Humans , Influenza, Human/virology , Lung/microbiology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/microbiology , Orthomyxoviridae Infections/virology , Pneumonia, Bacterial/etiology , Pneumonia, Bacterial/pathology
12.
Sci Rep ; 11(1): 12963, 2021 06 21.
Article En | MEDLINE | ID: mdl-34155274

Streptococcus mutans produces bacteriocins that show antibacterial activity against several bacteria. However, comprehensive analysis of these bacteriocins has not been well done. In this study, we isolated 125 S. mutans strains from volunteers and determined their whole genome sequence. Based on the genome analysis, the distribution of each bacteriocin gene (mutacins I-IV, K8 and Smb) was investigated. We found 17, 5, and 2 strains showing 100% matches with mutacin I, mutacin II and mutacin III, respectively. Five mutacin III-positive strains had 2 mismatches compared to mature mutacin III. In 67 mutacin IV-positive strains, 38 strains showed 100% match with mutacin IV, while 29 strains showed some variations. In 23 mutacin K8- and 32 mutacin Smb-positive strains, all except one mutacin K8-positive strain showed 100% match with the mature peptides. Among 125 strains, 84 (65.1%), 26 (20.2%), and 5 (3.9%) strains were positive for one, two and three bacteriocin genes, respectively. Then, the antibacterial activity against oral streptococci and other oral bacterial species was investigated by using bacteriocin gene single-positive strains. Each bacteriocin gene-positive strain showed a different pattern of antibacterial activity. These results speculate that individual S. mutans strains may affect the bacterial composition of dental plaques.


Bacteriocins/genetics , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Amino Acid Sequence , Anti-Bacterial Agents/biosynthesis , Antibiosis , Bacteriocins/chemistry , Bacteriocins/metabolism , Gene Expression Regulation, Bacterial , Humans , Microbial Sensitivity Tests , Mutation , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Streptococcus mutans/classification
13.
Cell Rep ; 34(13): 108924, 2021 03 30.
Article En | MEDLINE | ID: mdl-33789094

The arginine deiminase (ADI) pathway has been found in many kinds of bacteria and functions to supplement energy production and provide protection against acid stress. The Streptococcus pyogenes ADI pathway is upregulated upon exposure to various environmental stresses, including glucose starvation. However, there are several unclear points about the advantages to the organism for upregulating arginine catabolism. We show that the ADI pathway contributes to bacterial viability and pathogenesis under low-glucose conditions. S. pyogenes changes global gene expression, including upregulation of virulence genes, by catabolizing arginine. In a murine model of epicutaneous infection, S. pyogenes uses the ADI pathway to augment its pathogenicity by increasing the expression of virulence genes, including those encoding the exotoxins. We also find that arginine from stratum-corneum-derived filaggrin is a key substrate for the ADI pathway. In summary, arginine is a nutrient source that promotes the pathogenicity of S. pyogenes on the skin.


Arginine/metabolism , Skin/microbiology , Streptococcus pyogenes/pathogenicity , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Filaggrin Proteins , Gene Expression Regulation, Bacterial , HaCaT Cells , Humans , Hydrolases/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Microbial Viability , Phosphorylation , Skin/pathology , Streptococcal Infections/blood , Streptococcal Infections/microbiology , Streptococcal Infections/pathology , Streptococcus pyogenes/genetics , Transcriptome/genetics , Up-Regulation , Virulence
14.
Front Microbiol ; 12: 616508, 2021.
Article En | MEDLINE | ID: mdl-33633705

Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human pathogen. This bacterial species is responsible for a large variety of infections, ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins, with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively. Since the discovery of GAS pili in 2005, their genetic features, including regulation of expression, and structural features, including assembly mechanisms and protein conformation, as well as their functional role in GAS pathogenesis have been intensively examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus biogenesis-related genes are located in a discrete section of the GAS genome encoding fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region). Based on the heterogeneity of genetic composition and DNA sequences, this region is currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins encoded in the FCT region are known to be correlated with infection sites, such as the skin and throat, possibly contributing to tissue tropism. As also found for pili of other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide bonds, while intramolecular isopeptide bonds present in the pilin provide increased resistance to degradation by proteases. As supported by findings showing that the main subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili participate in biofilm formation and evasion of the immune system in a serotype/strain-specific manner. These multiple functions highlight crucial roles of pili during the onset of GAS infection. This review summarizes the current state of the art regarding GAS pili, including a new mode of host-GAS interaction mediated by pili, along with insights into pilus expression in terms of tissue tropism.

15.
Microbiol Immunol ; 65(3): 101-114, 2021 Mar.
Article En | MEDLINE | ID: mdl-33591576

Aggregatibacter actinomycetemcomitans is a facultative anaerobic Gram-negative bacterium associated with periodontal diseases, especially aggressive periodontitis. The virulence factors of this pathogen, including adhesins, exotoxins, and endotoxin, have been extensively studied. However, little is known about their gene expression mode in the host. Herein, we investigated whether culture conditions reflecting in vivo environments, including serum and saliva, alter expression levels of virulence genes in the strain HK1651, a JP2 clone. Under aerobic conditions, addition of calf serum (CS) into a general medium induced high expression of two outer membrane proteins (omp100 and omp64). The high expression of omp100 and omp64 was also induced by an iron-limited medium. RNA-seq analysis showed that the gene expressions of several factors involved in iron acquisition were increased in the CS-containing medium. When HK1651 was grown on agar plates, genes encoding many virulence factors, including the Omps, cytolethal distending toxin, and leukotoxin, were differentially expressed. Then, we investigated their expression in five other A. actinomycetemcomitans strains grown in general and CS-containing media. The expression pattern of virulence factors varied among strains. Compared with the other five strains, HK1561 showed high expression of omp29 regardless of the CS addition, while the gene expression of leukotoxin in HK1651 was higher only in the medium without CS. HK1651 showed reduced biofilm in both CS- and saliva-containing media. Coaggregation with Fusobacterium nucleatum was remarkably enhanced using HK1651 grown in the CS-containing medium. Our results indicate that the expression of virulence factors is altered by adaptation to different conditions during infection.


Aggregatibacter actinomycetemcomitans , Bacterial Outer Membrane Proteins/metabolism , Periodontal Diseases , Virulence Factors/metabolism , Aggregatibacter actinomycetemcomitans/pathogenicity , Humans , Periodontal Diseases/microbiology , Virulence
16.
Front Microbiol ; 11: 582437, 2020.
Article En | MEDLINE | ID: mdl-33072054

Streptococcus pneumoniae is a major cause of pneumonia, sepsis, and meningitis. Previously, we identified a novel virulence factor by investigating evolutionary selective pressure exerted on pneumococcal choline-binding cell surface proteins. Herein, we focus on another pneumococcal cell surface protein. Cell wall-anchoring proteins containing the LPXTG motif are conserved in Gram-positive bacteria. Our evolutionary analysis showed that among the examined genes, nanA and bgaA had high proportions of codon that were under significant negative selection. Both nanA and bgaA encode a multi-functional glycosidase that aids nutrient acquisition in a glucose-poor environment, pneumococcal adherence to host cells, and evasion from host immunity. However, several studies have shown that the role of BgaA is limited in a mouse pneumonia model, and it remains unclear if BgaA affects pneumococcal pathogenesis in a mouse sepsis model. To evaluate the distribution and pathogenicity of bgaA, we performed phylogenetic analysis and intravenous infection assay. In both Bayesian and maximum likelihood phylogenetic trees, the genetic distances between pneumococcal bgaA was small, and the cluster of pneumococcal bgaA did not contain other bacterial orthologs except for a Streptococcus gwangjuense gene. Evolutionary analysis and BgaA structure indicated BgaA active site was not allowed to change. The mouse infection assay showed that the deletion of bgaA significantly reduced host mortality. These results indicated that both nanA and bgaA encode evolutionally conserved pneumococcal virulence factors and that molecular evolutionary analysis could be a useful alternative strategy for identification of virulence factors.

17.
Hematol Oncol ; 38(5): 799-807, 2020 Dec.
Article En | MEDLINE | ID: mdl-32798315

Patients with autoimmune diseases (AIDs) may develop lymphoproliferative disorders (LPDs) during treatment with immunosuppressive agents (IS) such as methotrexate (MTX), biological agents, or tacrolimus. Some LPDs in patients with AIDs (AID-LPDs) regress after withdrawal of IS, and a high incidence of Epstein-Barr virus (EBV) positivity in such patients has been reported. To identify characteristics and factors predictive of the response to treatment and disease progression, we retrospectively analyzed clinical and histopathological data for 81 patients with AID-LPDs. Almost all of them (96%) had been treated with MTX. Diffuse large B cell lymphoma was the most common LPD type (61%) and seven patients (9%) had classical Hodgkin lymphoma (CHL). EBV was detected by in situ hybridization with an EBV-encoded small RNA (EBER) probe in 43% of the examined cases. In 59 patients, IS was discontinued as the initial treatment, resulting in regression of LPDs in 69% of them, and multivariate analysis showed that EBER positivity was an independent factor predictive of such regression (p = 0.022). Two-year progression-free survival (PFS) and overall survival for the patients overall were 63% and 83%, respectively. Poor PFS was associated with advanced stage (p = 0.024), worse performance status (PS, p = 0.031), CHL histology (p = 0.013), and reactivation of EBV-related antibodies (p = 0.029). In conclusion, EBV positivity demonstrated using an EBER probe is useful for prediction of successful regression after withdrawal of IS in patients with AID-LPDs. Patients with advanced stage disease, worse PS, CHL histology, or reactivation of EBV-related antibodies should be closely monitored after initial treatment.


Autoimmune Diseases/complications , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/physiology , Immunologic Deficiency Syndromes/complications , Immunosuppressive Agents/adverse effects , Lymphoproliferative Disorders/diagnosis , Lymphoproliferative Disorders/etiology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoimmune Diseases/drug therapy , Biomarkers , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunologic Deficiency Syndromes/drug therapy , Immunosuppressive Agents/therapeutic use , Lymphoproliferative Disorders/therapy , Male , Middle Aged , Odds Ratio , Patient Outcome Assessment , Severity of Illness Index
18.
Methods Mol Biol ; 2136: 181-190, 2020.
Article En | MEDLINE | ID: mdl-32430821

Streptococcus pyogenes utilizes extracellular cellular matrix (ECM) proteins to adhere to human tissues and internalize into host cells. Fibronectin (Fn) is one of the most abundant ECM proteins and targeted by a wide variety of secreted Fn-binding proteins (Fbps) of S. pyogenes. However, prior to detailed kinetic analysis of that binding process, evaluations of the ability of S. pyogenes strains to bind to Fn as well as interactions of target molecules with Fn are required. In this chapter, we present routine procedures for ligand blot analysis with labeled human Fn, using bacterial cell wall extracts prepared by either enzymatic digestion of cells or extraction with a denaturing agent.


Adhesins, Bacterial/isolation & purification , Blotting, Western/methods , Streptococcus pyogenes/metabolism , Adhesins, Bacterial/metabolism , Amino Acid Sequence/genetics , Bacterial Adhesion/physiology , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Cell Line , Fibronectins/metabolism , Humans , Kinetics , Ligands , Protein Binding/physiology
19.
PLoS One ; 15(4): e0231101, 2020.
Article En | MEDLINE | ID: mdl-32302339

Mast cells and basophils are central players in allergic reactions triggered by immunoglobulin E (IgE). They have intracellular granules containing allergic mediators (e.g., histamine, serotonin, inflammatory cytokines, proteases and ß-hexosaminidase), and stimulation by IgE-allergen complex leads to the release of such allergic mediators from the granules, that is, degranulation. Mast cells are residents of mucosal surfaces, including those of nasal and oral cavities, and play an important role in the innate defense system. Members of the mitis group streptococci such as Streptococcus oralis, are primary colonizers of the human oral cavity. They produce hydrogen peroxide (H2O2) as a by-product of sugar metabolism. In this study, we investigated the effects of streptococcal infection on RBL-2H3 mast cell/basophil cell line. Infection by oral streptococci did not induce degranulation of the cells. Stimulation of the RBL-2H3 cells with anti-dinitrophenol (DNP) IgE and DNP-conjugated human serum albumin triggers degranulation with the release of ß-hexosaminidase. We found that S. oralis and other mitis group streptococci inhibited the IgE-triggered degranulation of RBL-2H3 cells. Since mitis group streptococci produce H2O2, we examined the effect of S. oralis mutant strain deficient in producing H2O2, and found that they lost the ability to suppress the degranulation. Moreover, H2O2 alone inhibited the IgE-induced degranulation. Subsequent analysis suggested that the inhibition of degranulation was related to the cytotoxicity of streptococcal H2O2. Activated RBL-2H3 cells produce interleukin-4 (IL-4); however, IL-4 production was not induced by streptococcal H2O2. Furthermore, an in vivo study using the murine pollen-induced allergic rhinitis model suggested that the streptococcal H2O2 reduces nasal allergic reaction. These findings reveal that H2O2 produced by oral mitis group streptococci inhibits IgE-stimulated degranulation by inducing cell death. Consequently, streptococcal H2O2 can be considered to modulate the allergic reaction in mucosal surfaces.


Allergens/metabolism , Hypersensitivity/immunology , Immunoglobulin E/immunology , Streptococcal Infections/drug therapy , Allergens/immunology , Animals , Basophils/immunology , Basophils/microbiology , Basophils/pathology , Cell Degranulation/immunology , Cell Survival/immunology , Dinitrophenols/pharmacology , Humans , Hydrogen Peroxide/metabolism , Hypersensitivity/drug therapy , Hypersensitivity/pathology , Immunoglobulin E/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Mast Cells/immunology , Mast Cells/microbiology , Mast Cells/pathology , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Serum Albumin, Human/immunology , Serum Albumin, Human/metabolism , Streptococcal Infections/immunology , Streptococcus oralis/immunology , Streptococcus oralis/pathogenicity , Sugars/metabolism
20.
J Hepatol ; 73(2): 285-293, 2020 08.
Article En | MEDLINE | ID: mdl-32194183

BACKGROUND & AIMS: HBV reactivation is a risk in patients receiving anti-CD20 antibodies for the treatment of lymphoma. The purpose of this post hoc analysis was to evaluate the efficacy of an ultra-high sensitivity HBsAg assay to guide preemptive antiviral treatment in patients with lymphoma and resolved HBV infections using prospectively stored samples from an HBV DNA monitoring study. METHODS: HBV reactivation (defined as HBV DNA levels of ≥11 IU/ml) was confirmed in 22 of 252 patients. A conventional HBsAg assay (ARCHITECT, cut-off value: 0.05 IU/ml) and an ultra-high sensitivity HBsAg assay employing a semi-automated immune complex transfer chemiluminescence enzyme technique (ICT-CLEIA, cut-off value: 0.0005 IU/ml) were performed at baseline, at confirmed HBV reactivation and monitored after HBV reactivation. RESULTS: Baseline HBsAg was detected using ICT-CLEIA in 4 patients; in all of whom precore mutants with high replication capacity were reactivated. Of the 6 patients with HBV DNA detected below the level of quantification at baseline, 5 showed HBV reactivation and 3 of the 5 had precore mutations. Sensitivity for detection by ARCHITECT and ICT-CLEIA HBsAg assays at HBV reactivation or the next sampling after HBV reactivation was 18.2% (4 of 22) and 77.3% (17 of 22), respectively. Of the 5 patients undetectable by ICT-CLEIA, HBV reactivation resolved spontaneously in 2 patients. All 6 patients reactivated with precore mutations including preS deletion could be diagnosed by ICT-CLEIA HBsAg assay at an early stage of HBV reactivation. Multivariate analysis showed that an anti-HBs titer of less than 10 mIU/ml, HBV DNA detected but below the level of quantification, and HBsAg detected by ICT-CLEIA at baseline were independent risk factors for HBV reactivation (adjusted hazard ratios, 15.4, 31.2 and 8.7, respectively; p <0.05). CONCLUSIONS: A novel ICT-CLEIA HBsAg assay is an alternative method to diagnose HBV reactivation. CLINICAL TRIAL NUMBER: UMIN000001299. LAY SUMMARY: Hepatitis B virus can be reactivated in lymphoma patients receiving anti-CD20 antibodies such as rituximab. Currently, reactivation requires the monitoring of HBV DNA, but monitoring of the surface antigen (HBsAg) could provide a relatively inexpensive, quick and easy alternative. We assessed the performance of an ultra-high sensitivity HBsAg assay and showed that it could be effective for the diagnosis and monitoring of HBV reactivation.


Drug Monitoring/methods , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B, Chronic , Lymphoma , Reinfection , Rituximab , Aged , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Comorbidity , DNA, Viral/isolation & purification , Female , Hepatitis B Surface Antigens/analysis , Hepatitis B Surface Antigens/blood , Hepatitis B virus/drug effects , Hepatitis B virus/isolation & purification , Hepatitis B virus/physiology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/epidemiology , Humans , Japan/epidemiology , Lymphoma/drug therapy , Lymphoma/epidemiology , Lymphoma/virology , Male , Reinfection/etiology , Reinfection/prevention & control , Reinfection/virology , Reproducibility of Results , Rituximab/administration & dosage , Rituximab/adverse effects , Serologic Tests/methods
...