Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
ACS Chem Neurosci ; 13(3): 313-321, 2022 02 02.
Article En | MEDLINE | ID: mdl-35061371

Inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity is a promising approach to treat diseases associated with epigenetic dysregulation, such as neurodevelopmental disorders. However, this concept has not been fully validated because genetic LSD1 deletion causes embryonic lethality and conventional LSD1 inhibitors cause thrombocytopenia via the dissociation of LSD1-cofactor complex. To characterize the therapeutic potential of LSD1 enzyme inhibition, we used TAK-418 and T-448, the LSD1 enzyme activity-specific inhibitors with minimal impact on the LSD1-cofactor complex. TAK-418 and T-448, by inhibiting brain LSD1 enzyme activity, consistently improved social deficits in animal models of neurodevelopmental disorders without causing thrombocytopenia. Moreover, TAK-418 improved memory deficits caused by aging or amyloid precursor protein overexpression. In contrast, TAK-418 did not improve memory deficits caused by miR-137 overexpression. Thus, miR-137 modulation may be involved in memory improvement by LSD1 inhibition. TAK-418 warrants further investigation as a novel therapeutic agent for diseases with epigenetic dysregulation.


Enzyme Inhibitors , Histone Demethylases , Memory Disorders , MicroRNAs/genetics , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Histone Demethylases/metabolism , Memory Disorders/drug therapy , Rodentia
2.
Sci Adv ; 7(11)2021 03.
Article En | MEDLINE | ID: mdl-33712455

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic , Female , Histone Demethylases/metabolism , Humans
3.
Mol Ther Methods Clin Dev ; 20: 779-791, 2021 Mar 12.
Article En | MEDLINE | ID: mdl-33738331

Kabuki syndrome (KS) is a rare cause of intellectual disability primarily caused by loss-of-function mutations in lysine-specific methyltransferase 2D (KMT2D), which normally adds methyl marks to lysine 4 on histone 3. Previous studies have shown that a mouse model of KS (Kmt2d +/ßGeo ) demonstrates disruption of adult neurogenesis and hippocampal memory. Proof-of-principle studies have shown postnatal rescue of neurological dysfunction following treatments that promote chromatin opening; however, these strategies are non-specific and do not directly address the primary defect of histone methylation. Since lysine-specific demethylase 1A (LSD1/KDM1A) normally removes the H3K4 methyl marks added by KMT2D, we hypothesized that inhibition of KDM1A demethylase activity may ameliorate molecular and phenotypic defects stemming from KMT2D loss. To test this hypothesis, we evaluated a recently developed KDM1A inhibitor (TAK-418) in Kmt2d +/ßGeo mice. We found that orally administered TAK-418 increases the numbers of newly born doublecortin (DCX)+ cells and processes in the hippocampus in a dose-dependent manner. We also observed TAK-418-dependent rescue of histone modification defects in hippocampus both by western blot and chromatin immunoprecipitation sequencing (ChIP-seq). Treatment rescues gene expression abnormalities including those of immediate early genes such as FBJ osteosarcoma oncogene (Fos) and FBJ osteosarcoma oncogene homolog B (Fosb). After 2 weeks of TAK-418, Kmt2d +/ßGeo mice demonstrated normalization of hippocampal memory defects. In summary, our data suggest that KDM1A inhibition is a plausible treatment strategy for KS and support the hypothesis that the epigenetic dysregulation secondary to KMT2D dysfunction plays a major role in the postnatal neurological disease phenotype in KS.

4.
Int J Neuropsychopharmacol ; 23(2): 96-107, 2020 02 01.
Article En | MEDLINE | ID: mdl-31689714

BACKGROUND: Faster off-rate competitive enzyme inhibitors are generally more sensitive than slower off-rate ones to binding inhibition by enzyme substrates. We previously reported that the cyclic adenosine monophosphate concentration in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) may be higher than that in D2-MSNs. Consequently, compared with slower off-rate phosphodiesterase 10A inhibitors, faster off-rate ones comparably activated D2-MSNs but partially activated D1-MSNs. We further investigated the pharmacological profiles of phosphodiesterase 10A inhibitors with different off-rates. METHODS: Phosphodiesterase 10A inhibitors with slower (T-609) and faster (T-773) off-rates were used. D1- and D2-MSN activation was assessed by substance P and enkephalin mRNA induction, respectively, in rodents. Antipsychotic-like effects were evaluated by MK-801- and methamphetamine-induced hyperactivity and prepulse inhibition in rodents. Cognition was assessed by novel object recognition task and radial arm maze in rats. Prefrontal cortex activation was evaluated by c-Fos immunohistochemistry in rats. Gene translations in D1- and D2-MSNs were evaluated by translating ribosome affinity purification and RNA sequencing in mice. RESULTS: Compared with T-609, T-773 comparably activated D2-MSNs but partially activated D1-MSNs. Haloperidol (a D2 antagonist) and T-773, but not T-609, produced antipsychotic-like effects in all paradigms. T-773, but not T-609 or haloperidol, activated the prefrontal cortex and improved cognition. Overall gene translation patterns in D2-MSNs by all drugs and those in D1-MSNs by T-773 and T-609 were qualitatively similar. CONCLUSIONS: Differential pharmacological profiles among those drugs could be attributable to activation balance of D1- and D2-MSNs. The "balanced activation" of MSNs by faster off-rate phosphodiesterase 10A inhibitors may be favorable to treat schizophrenia.


Antipsychotic Agents/pharmacology , Corpus Striatum/drug effects , GABAergic Neurons/drug effects , Maze Learning/drug effects , Nootropic Agents/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases , Prefrontal Cortex/drug effects , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D2/drug effects , Recognition, Psychology/drug effects , Animals , Behavior, Animal/drug effects , Male , Mice, Inbred C57BL , Rats , Rats, Long-Evans , Rats, Sprague-Dawley
5.
PLoS One ; 14(7): e0220389, 2019.
Article En | MEDLINE | ID: mdl-31361772

Schizophrenia is a psychiatric disorder characterized by positive and negative symptoms and cognitive deficits. The exact cause of schizophrenia is still unknown, but substantial evidence indicates that it has a genetic component. Genome wide association studies demonstrate variants within miR-137 host gene are a risk factor for schizophrenia. However, the direct relationship between the pathophysiology of schizophrenia and the dosage of miR-137 remains unclear. Therefore, in this study, we generated transgenic mice overexpressing miR-137 (miR-137 Tg mice) with the neuron-specific Thy-1 promoter and examined schizophrenia-related phenotypes in these mice. Overexpression of miR-137 was observed in various brain regions of the miR-137 Tg mice, with down-regulation of putative miR-137 targets. MiR-137 Tg mice showed sensory gating deficits in a prepulse inhibition test, social deficits in a sociability and social novelty test, and cognitive deficits in a novel object recognition test. Interestingly, the predicted-altered pathways of the medial prefrontal cortex of miR-137 Tg mice were partially overlapped with those of the dorsolateral prefrontal cortex in postmortem brain of patients who died in equal to or less than 4 years after initial diagnosis of schizophrenia in published data. These results suggest that overexpression of miR-137 in the whole brain induces the several phenotypes that are relevant to aspects of psychiatric disorders, such as schizophrenia. Based on these findings, miR-137 Tg mice may have the potential to become a useful tool in researching the pathophysiology of psychiatric disorders.


Brain/metabolism , Cognition Disorders/genetics , Gene Expression Profiling/methods , MicroRNAs/genetics , Up-Regulation , Animals , Brain/physiopathology , Cognition Disorders/physiopathology , Cognition Disorders/psychology , Disease Models, Animal , Exploratory Behavior , Humans , Male , Mice , Mice, Transgenic , Promoter Regions, Genetic , Schizophrenic Psychology , Sensory Gating , Thy-1 Antigens/genetics
6.
Neuroscience ; 414: 60-76, 2019 08 21.
Article En | MEDLINE | ID: mdl-31299348

Activation of the M1 muscarinic acetylcholine receptor (M1R) may be an effective therapeutic approach for Alzheimer's disease (AD), dementia with Lewy bodies, and schizophrenia. Previously, the M1R/M4R agonist xanomeline was shown to improve cognitive function and exert antipsychotic effects in patients with AD and schizophrenia. However, its clinical development was discontinued because of its cholinomimetic side effects. We compared in vivo pharmacological profiles of a novel M1R-selective positive allosteric modulator, TAK-071, and xanomeline in rodents. Xanomeline suppressed both methamphetamine- and MK-801-induced hyperlocomotion in mice, whereas TAK-071 suppressed only MK-801-induced hyperlocomotion. In a previous study, we showed that TAK-071 improved scopolamine-induced cognitive deficits in a rat novel object recognition task (NORT) with 33-fold margins versus cholinergic side effects (diarrhea). Xanomeline also improved scopolamine-induced cognitive impairments in a NORT; however, it had no margin versus cholinergic side effects (e.g., diarrhea, salivation, and hypoactivity) in rats. These side effects were observed even in M1R knockout mice. Evaluation of c-Fos expression as a marker of neural activation revealed that xanomeline increased the number of c-Fos-positive cells in several cortical areas, the hippocampal formation, amygdala, and nucleus accumbens. Other than in the orbital cortex and claustrum, TAK-071 induced similar c-Fos expression patterns. When donepezil was co-administered to increase the levels of acetylcholine, the number of TAK-071-induced c-Fos-positive cells in these brain regions was increased. TAK-071, through induction of similar neural activation as that seen with xanomeline, may produce procognitive and antipsychotic effects with improved cholinergic side effects.


Motor Activity/drug effects , Muscarinic Agonists/pharmacology , Pyridines/pharmacology , Recognition, Psychology/drug effects , Thiadiazoles/pharmacology , Allosteric Regulation , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cognition/drug effects , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Muscarinic Agonists/therapeutic use , Proto-Oncogene Proteins c-fos/metabolism , Pyridines/therapeutic use , Rats , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M4/agonists , Scopolamine , Thiadiazoles/therapeutic use
7.
J Med Chem ; 62(10): 4915-4935, 2019 05 23.
Article En | MEDLINE | ID: mdl-31009559

Anaplastic lymphoma kinase (ALK), a member of the receptor tyrosine kinase family, is predominantly expressed in the brain and implicated in neuronal development and cognition. However, the detailed function of ALK in the central nervous system (CNS) is still unclear. To elucidate the role of ALK in the CNS, it was necessary to discover a potent, selective, and brain-penetrant ALK inhibitor. Scaffold hopping and lead optimization of N-(2,4-difluorobenzyl)-3-(1 H-pyrazol-5-yl)imidazo[1,2- b]pyridazin-6-amine 1 guided by a cocrystal structure of compound 1 bound to ALK resulted in the identification of (6-(1-(5-fluoropyridin-2-yl)ethoxy)-1-(5-methyl-1 H-pyrazol-3-yl)-1 H-pyrrolo[2,3- b]pyridin-3-yl)((2 S)-2-methylmorpholin-4-yl)methanone 13 as a highly potent, selective, and brain-penetrable compound. Intraperitoneal administration of compound 13 significantly decreased the phosphorylated-ALK (p-ALK) levels in the hippocampus and prefrontal cortex in the mouse brain. These results suggest that compound 13 could serve as a useful chemical probe to elucidate the mechanism of ALK-mediated brain functions and the therapeutic potential of ALK inhibition.


Anaplastic Lymphoma Kinase/antagonists & inhibitors , Brain/drug effects , Drug Discovery/methods , Protein Kinase Inhibitors/chemical synthesis , Animals , Biological Transport , Brain/metabolism , Crystallography, X-Ray , HEK293 Cells , Humans , Inhibitory Concentration 50 , LLC-PK1 Cells , Mice , Mice, Inbred ICR , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Swine
8.
Neurosci Res ; 125: 29-36, 2017 Dec.
Article En | MEDLINE | ID: mdl-28687229

TAK-063, a selective phosphodiesterase 10A (PDE10A) inhibitor, produces potent antipsychotic-like and pro-cognitive effects in rodents via balanced activation of striatal direct and indirect pathway medium spiny neurons (MSNs). Brain activity modulation by TAK-063 has been characterized using pharmacological magnetic resonance imaging and electroencephalography in animals, revealing modulation of activity in the prefrontal cortex (PFC) where there is little or no PDE10A expression. To understand the specific brain regions and cells affected by TAK-063 in rats, we assessed neural activation in the striatal complex and PFC using immunofluorescence staining to measure c-Fos expression. TAK-063 at 0.3 and 3mg/kg induced a dose-dependent increase in the number of c-Fos immunoreactive cells in the striatal complex. Furthermore, TAK-063 increased the number of MSNs expressing c-fos mRNA in both the D1 receptor-expressing direct pathway and D2 receptor-expressing indirect pathway of the striatal complex. TAK-063 (0.3 and 3mg/kg) induced c-Fos expression in the anterior cingulate cortex (ACC) and prelimbic cortex (PrL), but not the infralimbic, dorsal peduncular, primary motor or anterior insular cortices. These findings suggest that administration of TAK-063 activates similar numbers of direct and indirect pathway MSNs, resulting in activation predominantly in medial PFC sub-regions, such as the ACC and PrL.


Phosphodiesterase Inhibitors/pharmacology , Prefrontal Cortex/drug effects , Proto-Oncogene Proteins c-fos/drug effects , Pyrazoles/pharmacology , Pyridazines/pharmacology , Animals , Antipsychotic Agents/pharmacology , Male , Neurons/drug effects , Neurons/metabolism , Phosphoric Diester Hydrolases/metabolism , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley
9.
Plant Cell Physiol ; 54(5): 711-27, 2013 May.
Article En | MEDLINE | ID: mdl-23509110

Biology is increasingly becoming a data-intensive science with the recent progress of the omics fields, e.g. genomics, transcriptomics, proteomics and metabolomics. The species-metabolite relationship database, KNApSAcK Core, has been widely utilized and cited in metabolomics research, and chronological analysis of that research work has helped to reveal recent trends in metabolomics research. To meet the needs of these trends, the KNApSAcK database has been extended by incorporating a secondary metabolic pathway database called Motorcycle DB. We examined the enzyme sequence diversity related to secondary metabolism by means of batch-learning self-organizing maps (BL-SOMs). Initially, we constructed a map by using a big data matrix consisting of the frequencies of all possible dipeptides in the protein sequence segments of plants and bacteria. The enzyme sequence diversity of the secondary metabolic pathways was examined by identifying clusters of segments associated with certain enzyme groups in the resulting map. The extent of diversity of 15 secondary metabolic enzyme groups is discussed. Data-intensive approaches such as BL-SOM applied to big data matrices are needed for systematizing protein sequences. Handling big data has become an inevitable part of biology.


Databases as Topic , Plant Proteins/chemistry , Plants/metabolism , Secondary Metabolism , Alkaloids/metabolism , Alkyl and Aryl Transferases/metabolism , Amino Acid Sequence , Cytochrome P-450 Enzyme System/metabolism , Flavonoids/metabolism , Metabolomics , Peptides/chemistry , Plants/enzymology
...