Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Science ; 375(6584): 1011-1016, 2022 03 04.
Article En | MEDLINE | ID: mdl-35143255

The Hayabusa2 spacecraft investigated the C-type (carbonaceous) asteroid (162173) Ryugu. The mission performed two landing operations to collect samples of surface and subsurface material, the latter exposed by an artificial impact. We present images of the second touchdown site, finding that ejecta from the impact crater was present at the sample location. Surface pebbles at both landing sites show morphological variations ranging from rugged to smooth, similar to Ryugu's boulders, and shapes from quasi-spherical to flattened. The samples were returned to Earth on 6 December 2020. We describe the morphology of >5 grams of returned pebbles and sand. Their diverse color, shape, and structure are consistent with the observed materials of Ryugu; we conclude that they are a representative sample of the asteroid.

2.
Science ; 364(6437): 272-275, 2019 04 19.
Article En | MEDLINE | ID: mdl-30890589

The near-Earth asteroid 162173 Ryugu, the target of the Hayabusa2 sample-return mission, is thought to be a primitive carbonaceous object. We report reflectance spectra of Ryugu's surface acquired with the Near-Infrared Spectrometer (NIRS3) on Hayabusa2, to provide direct measurements of the surface composition and geological context for the returned samples. A weak, narrow absorption feature centered at 2.72 micrometers was detected across the entire observed surface, indicating that hydroxyl (OH)-bearing minerals are ubiquitous there. The intensity of the OH feature and low albedo are similar to thermally and/or shock-metamorphosed carbonaceous chondrite meteorites. There are few variations in the OH-band position, which is consistent with Ryugu being a compositionally homogeneous rubble-pile object generated from impact fragments of an undifferentiated aqueously altered parent body.

3.
Science ; 333(6046): 1121-5, 2011 Aug 26.
Article En | MEDLINE | ID: mdl-21868670

The reflectance spectra of the most abundant meteorites, ordinary chondrites, are different from those of the abundant S-type (mnemonic for siliceous) asteroids. This discrepancy has been thought to be due to space weathering, which is an alteration of the surfaces of airless bodies exposed to the space environment. Here we report evidence of space weathering on particles returned from the S-type asteroid 25143 Itokawa by the Hayabusa spacecraft. Surface modification was found in 5 out of 10 particles, which varies depending on mineral species. Sulfur-bearing Fe-rich nanoparticles exist in a thin (5 to 15 nanometers) surface layer on olivine, low-Ca pyroxene, and plagioclase, which is suggestive of vapor deposition. Sulfur-free Fe-rich nanoparticles exist deeper inside (<60 nanometers) ferromagnesian silicates. Their texture suggests formation by metamictization and in situ reduction of Fe(2+).

4.
Bioprocess Biosyst Eng ; 25(5): 291-8, 2003 Mar.
Article En | MEDLINE | ID: mdl-14505173

An experimental method for metabolic control analysis (MCA) was applied to the investigation of a metabolic network of glutamate production by Corynebacterium glutamicum. A metabolic reaction (MR) model was constructed and used for flux distribution analysis (MFA). The flux distribution at a key branch point, 2-oxoglutarate, was investigated in detail. Activities of isocitrate dehydrogenase (ICDH), glutamate dehydrogenase (GDH), and 2-oxoglutarate dehydrogenase complex (ODHC) around this the branch point were changed, using two genetically engineered strains (one with enhanced ICDH activity and the other with enhanced GDH activity) and by controlling environmental conditions (i.e. biotin-deficient conditions). The mole flux distribution was determined by an MR model, and the effects of the changes in the enzyme activities on the mole flux distribution were compared. Even though both GDH and ICDH activities were enhanced, the mole flux distribution was not significantly changed. When the ODHC activity was attenuated, the flux through ODHC decreased, and glutamate production was markedly increased. The flux control coefficients of the above three enzymes for glutamate production were determined based on changes in enzyme activities and the mole flux distributions. It was found that the factor with greatest impact on glutamate production in the metabolic network was obtained by attenuation of ODHC activity.

...