Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nat Commun ; 15(1): 4971, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871688

RESUMEN

Human type 1 diabetes (T1D) is caused by autoimmune attack on the insulin-producing pancreatic beta cells by islet antigen-reactive T cells. How human islet antigen-reactive (IAR) CD4+ memory T cells from peripheral blood affect T1D progression in the pancreas is poorly understood. Here, we aim to determine if IAR T cells in blood could be detected in pancreas. We identify paired αß (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new-onset, and established T1D donors, and measured sequence overlap with TCRs in pancreata from healthy, at risk and T1D organ donors. We report extensive TRA junction sharing between IAR T cells and pancreas-infiltrating T cells (PIT), with perfect-match or single-mismatch TRA junction amino acid sequences comprising ~29% total unique IAR TRA junctions (942/3,264). PIT-matched TRA junctions were largely public and enriched for TRAV41 usage, showing significant nucleotide sequence convergence, increased use of germline-encoded versus non-templated residues in epitope engagement, and a potential for cross-reactivity. Our findings thus link T cells with distinctive germline-like TRA chains in the peripheral blood with T cells in the pancreas.


Asunto(s)
Diabetes Mellitus Tipo 1 , Páncreas , Receptores de Antígenos de Linfocitos T alfa-beta , Humanos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/sangre , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Páncreas/inmunología , Masculino , Femenino , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T/inmunología , Células Germinativas/inmunología , Células Germinativas/metabolismo , Autoantígenos/inmunología
2.
Sci Adv ; 10(10): eadl1122, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446892

RESUMEN

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß cell autoimmunity and type 1 diabetes. We investigated how CVB affects human ß cells and anti-CVB T cell responses. ß cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with ß cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.


Asunto(s)
Infecciones por Coxsackievirus , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Linfocitos T CD8-positivos , Anticuerpos , Epítopos , Péptidos , Antivirales
3.
Sci Adv ; 9(49): eadj6975, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064552

RESUMEN

T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D). Here, we tracked ~1700 known antigen-specific TCR sequences, islet antigen or viral reactive, in bulk TCRß sequencing from longitudinal blood DNA samples in at-risk cases who progressed to T1D, age/sex/human leukocyte antigen-matched controls, and a new-onset T1D cohort. Shared and frequent antigen-specific TCRß sequences were identified in all three cohorts, and viral sequences were present across all ages. Islet sequences had different patterns of accumulation based upon antigen specificity in the at-risk cases. Furthermore, 73 islet-antigen TCRß sequences were present in higher frequencies and numbers in T1D samples relative to controls. The total number of these disease-associated TCRß sequences inversely correlated with age at clinical diagnosis, indicating the potential to use disease-relevant TCR sequences as biomarkers in autoimmune disorders.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 1/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Péptidos
4.
Front Immunol ; 14: 1276255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908349

RESUMEN

Gold nanoparticles (GNPs) have been used in the development of novel therapies as a way of delivery of both stimulatory and tolerogenic peptide cargoes. Here we report that intradermal injection of GNPs loaded with the proinsulin peptide C19-A3, in patients with type 1 diabetes, results in recruitment and retention of immune cells in the skin. These include large numbers of clonally expanded T-cells sharing the same paired T-cell receptors (TCRs) with activated phenotypes, half of which, when the TCRs were re-expressed in a cell-based system, were confirmed to be specific for either GNP or proinsulin. All the identified gold-specific clones were CD8+, whilst proinsulin-specific clones were both CD8+ and CD4+. Proinsulin-specific CD8+ clones had a distinctive cytotoxic phenotype with overexpression of granulysin (GNLY) and KIR receptors. Clonally expanded antigen-specific T cells remained in situ for months to years, with a spectrum of tissue resident memory and effector memory phenotypes. As the T-cell response is divided between targeting the gold core and the antigenic cargo, this offers a route to improving resident memory T-cells formation in response to vaccines. In addition, our scRNAseq data indicate that focusing on clonally expanded skin infiltrating T-cells recruited to intradermally injected antigen is a highly efficient method to enrich and identify antigen-specific cells. This approach has the potential to be used to monitor the intradermal delivery of antigens and nanoparticles for immune modulation in humans.


Asunto(s)
Diabetes Mellitus Tipo 1 , Nanopartículas del Metal , Humanos , Autoantígenos , Proinsulina/genética , Oro , Inyecciones Intradérmicas , Análisis de Expresión Génica de una Sola Célula , Péptidos/genética , Receptores de Antígenos de Linfocitos T/genética
5.
J Immunol ; 211(12): 1792-1805, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37877672

RESUMEN

In an effort to improve HLA-"humanized" mouse models for type 1 diabetes (T1D) therapy development, we previously generated directly in the NOD strain CRISPR/Cas9-mediated deletions of various combinations of murine MHC genes. These new models improved upon previously available platforms by retaining ß2-microglobulin functionality in FcRn and nonclassical MHC class I formation. As proof of concept, we generated H2-Db/H2-Kd double knockout NOD mice expressing human HLA-A*0201 or HLA-B*3906 class I variants that both supported autoreactive diabetogenic CD8+ T cell responses. In this follow-up work, we now describe the creation of 10 new NOD-based mouse models expressing various combinations of HLA genes with and without chimeric transgenic human TCRs reactive to proinsulin/insulin. The new TCR-transgenic models develop differing levels of insulitis mediated by HLA-DQ8-restricted insulin-reactive T cells. Additionally, these transgenic T cells can transfer insulitis to newly developed NSG mice lacking classical murine MHC molecules, but expressing HLA-DQ8. These new models can be used to test potential therapeutics for a possible capacity to reduce islet infiltration or change the phenotype of T cells expressing type 1 diabetes patient-derived ß cell autoantigen-specific TCRs.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Antígenos HLA-DQ , Humanos , Ratones , Animales , Ratones Endogámicos NOD , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Insulina , Ratones Transgénicos , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/genética
6.
Res Sq ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37886513

RESUMEN

Human islet antigen reactive CD4 + memory T cells (IAR T cells) from peripheral blood have been studied extensively for their role in the pathogenesis of autoimmune type 1 diabetes (T1D). However, IAR T cells are rare, and it remains poorly understood how they affect T1D progression in the pancreas. Using single cell RNA-sequencing coupled with a multiplexed activation induced marker (AIM) enrichment assay, we identified paired TCR alpha/beta (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new onset, and established T1D donors. Using TCR sequences as barcodes, we measured infiltration of IAR T cells from blood into pancreas of organ donors with and without T1D. We detected extensive TCR sharing between IAR T cells from peripheral blood and pancreatic infiltrating T cells (PIT), with perfectly matched or single mismatched TRA junctions and J gene regions, comprising ~ 34% of unique IAR TCRs. PIT-matching IAR T cells had public TRA chains that showed increased use of germline-encoded residues in epitope engagement and a propensity for cross-reactivity. The link with T cells in the pancreas implicates autoreactive IAR T cells with shared TRA junctions and increased levels in blood with the prediabetic and new onset phases of T1D progression.

7.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745505

RESUMEN

Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but its effect on the repertoire of HLA Class I (HLA-I)-bound peptides presented by pancreatic ß-cells is unknown. Using immunopeptidomics, we characterized the peptide/HLA-I presentation in in-vitro resting and IFN-α-exposed ß-cells. IFN-α increased HLA-I expression and peptide presentation, including neo-sequences derived from alternative mRNA splicing, post-translational modifications - notably glutathionylation - and protein cis-splicing. This antigenic landscape relied on processing by both the constitutive and immune proteasome. The resting ß-cell immunopeptidome was dominated by HLA-A-restricted ligands. However, IFN-α only marginally upregulated HLA-A and largely favored HLA-B, translating into a major increase in HLA-B-restricted peptides and into an increased activation of HLA-B-restricted vs. HLA-A-restricted CD8+ T-cells. A preferential HLA-B hyper-expression was also observed in the islets of T1D vs. non-diabetic donors, and we identified islet-infiltrating CD8+ T-cells from T1D donors reactive to HLA-B-restricted granule peptides. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward epitopes presented by HLA-B, hence recruiting a distinct T-cell repertoire that may be relevant to T1D pathogenesis.

8.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662376

RESUMEN

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß-cell autoimmunity. We investigated how CVB impacts human ß cells and anti-CVB T-cell responses. ß cells were efficiently infected by CVB in vitro, downregulated HLA Class I and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized only a fraction of these peptides, and only another sub-fraction was targeted by effector/memory T cells that expressed the exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with the ß-cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Thus, our in-vitro and ex-vivo data highlight limited T-cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and non-structural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.

9.
Diabetes ; 72(2): 184-195, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448936

RESUMEN

Type 1 diabetes (T1D) is a disease in which autoimmune attacks are directed at the insulin-producing ß-cell in the pancreatic islet. Autoantigens on the ß-cell surface membrane are specific markers for molecular recognition and targets for engagement by autoreactive B lymphocytes, which produce islet cell surface autoantibody (ICSA) upon activation. We report the cloning of an ICSA (mAb43) that recognizes a major T1D autoantigen, ZnT8, with a subnanomolar binding affinity and conformation specificity. We demonstrate that cell-surface binding of mAb43 protects the extracellular epitope of ZnT8 against immunolabeling by serum ICSA from a patient with T1D. Furthermore, mAb43 exhibits in vitro and ex vivo specificity for islet cells, mirroring the exquisite specificity of islet autoimmunity in T1D. Systemic administration of mAb43 yields a pancreas-specific biodistribution in mice and islet homing of an mAb43-linked imaging payload through the pancreatic vasculature, thereby validating the in vivo specificity of mAb43. Identifying ZnT8 as a major antigenic target of ICSA allows for research into the molecular recognition and engagement of autoreactive B cells in the chronic phase of T1D progression. The in vivo islet specificity of mAb43 could be further exploited to develop in vivo imaging and islet-specific immunotherapies.


Asunto(s)
Diabetes Mellitus Tipo 1 , Animales , Ratones , Autoanticuerpos , Autoantígenos , Diabetes Mellitus Tipo 1/terapia , Distribución Tisular
10.
Front Immunol ; 13: 926650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032090

RESUMEN

Insulin is considered to be a key antigenic target of T cells in Type 1 Diabetes (T1D) and autoimmune diabetes in the NOD mouse with particular focus on the B-chain amino acid sequence B:9-23 as the primary epitope. Our lab previously discovered that hybrid insulin peptides (HIPs), comprised of insulin C-peptide fragments fused to other ß-cell granule peptides, are ligands for several pathogenic CD4 T cell clones derived from NOD mice and for autoreactive CD4 T cells from T1D patients. A subset of CD4 T cell clones from our panel react to insulin and B:9-23 but only at high concentrations of antigen. We hypothesized that HIPs might also be formed from insulin B-chain sequences covalently bound to other endogenously cleaved ß-cell proteins. We report here on the identification of a B-chain HIP, termed the 6.3HIP, containing a fragment of B:9-23 joined to an endogenously processed peptide of ProSAAS, as a strong neo-epitope for the insulin-reactive CD4 T cell clone BDC-6.3. Using an I-Ag7 tetramer loaded with the 6.3HIP, we demonstrate that T cells reactive to this B-chain HIP can be readily detected in NOD mouse islet infiltrates. This work suggests that some portion of autoreactive T cells stimulated by insulin B:9-23 may be responding to B-chain HIPs as peptide ligands.


Asunto(s)
Diabetes Mellitus Tipo 1 , Animales , Linfocitos T CD4-Positivos , Epítopos , Ratones , Ratones Endogámicos NOD , Fragmentos de Péptidos , Péptidos
11.
JCI Insight ; 7(18)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998036

RESUMEN

T cell receptor (TCR) sequences are exceptionally diverse and can now be comprehensively measured with next-generation sequencing technologies. However, a thorough investigation of longitudinal TCR repertoires throughout childhood in health and during development of a common childhood disease, type 1 diabetes (T1D), has not been undertaken. Here, we deep sequenced the TCR-ß chain repertoires from longitudinal peripheral blood DNA samples at 4 time points beginning early in life (median age of 1.4 years) from children who progressed to T1D (n = 29) and age/sex-matched islet autoantibody-negative controls (n = 25). From 53 million TCR-ß sequences, we show that the repertoire is extraordinarily diverse early in life and narrows with age independently of disease. We demonstrate the ability to identify specific TCR sequences, including those known to recognize influenza A and, separately, those specific for insulin and its precursor, preproinsulin. Insulin-reactive TCR-ß sequences were more common and frequent in number as the disease progressed in those who developed T1D compared with genetically at risk nondiabetic children, and this was not the case for influenza-reactive sequences. As an independent validation, we sequenced and analyzed TCR-ß repertoires from a cohort of new-onset T1D patients (n = 143), identifying the same preproinsulin-reactive TCRs. These results demonstrate an enrichment of preproinsulin-reactive TCR sequences during the progression to T1D, highlighting the importance of using disease-relevant TCR sequences as powerful biomarkers in autoimmune disorders.


Asunto(s)
Diabetes Mellitus Tipo 1 , Gripe Humana , Niño , Diabetes Mellitus Tipo 1/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lactante , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética
12.
Front Immunol ; 12: 777788, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868047

RESUMEN

T cell receptors (TCRs) are unique markers that define antigen specificity for a given T cell. With the evolution of sequencing and computational analysis technologies, TCRs are now prime candidates for the development of next-generation non-cell based T cell biomarkers, which provide a surrogate measure to assess the presence of antigen-specific T cells. Type 1 diabetes (T1D), the immune-mediated form of diabetes, is a prototypical organ specific autoimmune disease in which T cells play a pivotal role in targeting pancreatic insulin-producing beta cells. While the disease is now predictable by measuring autoantibodies in the peripheral blood directed to beta cell proteins, there is an urgent need to develop T cell markers that recapitulate T cell activity in the pancreas and can be a measure of disease activity. This review focuses on the potential and challenges of developing TCR biomarkers for T1D. We summarize current knowledge about TCR repertoires and clonotypes specific for T1D and discuss challenges that are unique for autoimmune diabetes. Ultimately, the integration of large TCR datasets produced from individuals with and without T1D along with computational 'big data' analysis will facilitate the development of TCRs as potentially powerful biomarkers in the development of T1D.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/metabolismo , Susceptibilidad a Enfermedades , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Alelos , Animales , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Epítopos/química , Epítopos/inmunología , Epítopos/metabolismo , Predisposición Genética a la Enfermedad , Variación Genética , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/inmunología , Humanos , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/metabolismo , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
13.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34611019

RESUMEN

Cytotoxic CD8 T lymphocytes play a central role in the tissue destruction of many autoimmune disorders. In type 1 diabetes (T1D), insulin and its precursor preproinsulin are major self-antigens targeted by T cells. We comprehensively examined preproinsulin specificity of CD8 T cells obtained from pancreatic islets of organ donors with and without T1D and identified epitopes throughout the entire preproinsulin protein and defective ribosomal products derived from preproinsulin messenger RNA. The frequency of preproinsulin-reactive T cells was significantly higher in T1D donors than nondiabetic donors and also differed by individual T1D donor, ranging from 3 to over 40%, with higher frequencies in T1D organ donors with HLA-A*02:01. Only T cells reactive to preproinsulin-related peptides isolated from T1D donors demonstrated potent autoreactivity. Reactivity to similar regions of preproinsulin was also observed in peripheral blood of a separate cohort of new-onset T1D patients. These findings have important implications for designing antigen-specific immunotherapies and identifying individuals that may benefit from such interventions.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Insulina/inmunología , Islotes Pancreáticos/inmunología , Precursores de Proteínas/inmunología , Adolescente , Adulto , Autoantígenos/inmunología , Autoinmunidad/inmunología , Niño , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Femenino , Antígeno HLA-A2 , Humanos , Inmunoterapia/métodos , Islotes Pancreáticos/citología , Masculino , Adulto Joven
14.
Diabetes ; 70(12): 2879-2891, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34561224

RESUMEN

In type 1 diabetes, autoimmune ß-cell destruction may be favored by neoantigens harboring posttranslational modifications (PTMs) such as citrullination. We studied the recognition of native and citrullinated glucose-regulated protein (GRP)78 peptides by CD8+ T cells. Citrullination modulated T-cell recognition and, to a lesser extent, HLA-A2 binding. GRP78-reactive CD8+ T cells circulated at similar frequencies in healthy donors and donors with type 1 diabetes and preferentially recognized either native or citrullinated versions, without cross-reactivity. Rather, the preference for native GRP78 epitopes was associated with CD8+ T cells cross-reactive with bacterial mimotopes. In the pancreas, a dominant GRP78 peptide was instead preferentially recognized when citrullinated. To further clarify these recognition patterns, we considered the possibility of citrullination in the thymus. Citrullinating peptidylarginine deiminase (Padi) enzymes were expressed in murine and human medullary epithelial cells (mTECs), with citrullinated proteins detected in murine mTECs. However, Padi2 and Padi4 expression was diminished in mature mTECs from NOD mice versus C57BL/6 mice. We conclude that, on one hand, the CD8+ T cell preference for native GRP78 peptides may be shaped by cross-reactivity with bacterial mimotopes. On the other hand, PTMs may not invariably favor loss of tolerance because thymic citrullination, although impaired in NOD mice, may drive deletion of citrulline-reactive T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citrulinación/fisiología , Diabetes Mellitus Tipo 1/inmunología , Chaperón BiP del Retículo Endoplásmico/inmunología , Epítopos de Linfocito T/metabolismo , Adolescente , Adulto , Animales , Niño , Citrulinación/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Chaperón BiP del Retículo Endoplásmico/química , Chaperón BiP del Retículo Endoplásmico/metabolismo , Epítopos de Linfocito T/química , Femenino , Humanos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Persona de Mediana Edad , Procesamiento Proteico-Postraduccional/inmunología , Procesamiento Proteico-Postraduccional/fisiología , Adulto Joven
15.
Front Immunol ; 12: 668680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113344

RESUMEN

Hybrid Insulin Peptides (HIPs), which consist of insulin fragments fused to other peptides from ß-cell secretory granule proteins, are CD4 T cell autoantigens in type 1 diabetes (T1D). We have studied HIPs and HIP-reactive CD4 T cells extensively in the context of the non-obese diabetic (NOD) mouse model of autoimmune diabetes and have shown that CD4 T cells specific for HIPs are major contributors to disease pathogenesis. Additionally, in the human context, HIP-reactive CD4 T cells can be found in the islets and peripheral blood of T1D patients. Here, we performed an in-depth characterization of the CD4 T cell response to a C-peptide/C-peptide HIP (HIP11) in human T1D. We identified the TCR expressed by the previously-reported HIP11-reactive CD4 T cell clone E2, which was isolated from the peripheral blood of a T1D patient, and determined that it recognizes HIP11 in the context of HLA-DQ2. We also identified a HIP11-specific TCR directly in the islets of a T1D donor and demonstrated that this TCR recognizes a different minimal epitope of HIP11 presented by HLA-DQ8. We generated and tested an HLA-DQ2 tetramer loaded with HIP11 that will enable direct ex vivo interrogation of CD4 T cell responses to HIP11 in human patients and control subjects. Using mass spectrometric analysis, we confirmed that HIP11 is present in human islets. This work represents an important step in characterizing the role of CD4 T cell responses to HIPs in human T1D.


Asunto(s)
Autoantígenos/inmunología , Péptido C/inmunología , Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Insulina/inmunología , Islotes Pancreáticos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Autoantígenos/metabolismo , Péptido C/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/sangre , Epítopos , Femenino , Antígenos HLA-DQ/inmunología , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Células K562 , Masculino , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
16.
Front Endocrinol (Lausanne) ; 12: 622647, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841327

RESUMEN

Proinsulin is an abundant protein that is selectively expressed by pancreatic beta cells and has been a focus for development of antigen-specific immunotherapies for type 1 diabetes (T1D). In this study, we sought to comprehensively evaluate reactivity to preproinsulin by CD4 T cells originally isolated from pancreatic islets of organ donors having T1D. We analyzed 187 T cell receptor (TCR) clonotypes expressed by CD4 T cells obtained from six T1D donors and determined their response to 99 truncated preproinsulin peptide pools, in the presence of autologous B cells. We identified 14 TCR clonotypes from four out of the six donors that responded to preproinsulin peptides. Epitopes were found across all of proinsulin (insulin B-chain, C-peptide, and A-chain) including four hot spot regions containing peptides commonly targeted by TCR clonotypes derived from multiple T1D donors. Of importance, these hot spots overlap with peptide regions to which CD4 T cell responses have previously been detected in the peripheral blood of T1D patients. The 14 TCR clonotypes recognized proinsulin peptides presented by various HLA class II molecules, but there was a trend for dominant restriction with HLA-DQ, especially T1D risk alleles DQ8, DQ2, and DQ8-trans. The characteristics of the tri-molecular complex including proinsulin peptide, HLA-DQ molecule, and TCR derived from CD4 T cells in islets, provides an essential basis for developing antigen-specific biomarkers as well as immunotherapies.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Diabetes Mellitus Tipo 1/metabolismo , Insulina/farmacología , Islotes Pancreáticos/efectos de los fármacos , Precursores de Proteínas/farmacología , Linfocitos T CD4-Positivos/metabolismo , Epítopos/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Donantes de Tejidos
17.
Science ; 372(6538): 201-205, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33833125

RESUMEN

Cardiac regeneration requires dedifferentiation and proliferation of mature cardiomyocytes, but the mechanisms underlying this plasticity remain unclear. Here, we identify a potent cardiomyogenic role for Krüppel-like factor 1 (Klf1/Eklf), which is induced in adult zebrafish myocardium upon injury. Myocardial inhibition of Klf1 function does not affect heart development, but it severely impairs regeneration. Transient Klf1 activation is sufficient to expand mature myocardium in uninjured hearts. Klf1 directs epigenetic reprogramming of the cardiac transcription factor network, permitting coordinated cardiomyocyte dedifferentiation and proliferation. Myocardial expansion is supported by Klf1-induced rewiring of mitochondrial metabolism from oxidative respiration to anabolic pathways. Our findings establish Klf1 as a core transcriptional regulator of cardiomyocyte renewal in adult zebrafish hearts.


Asunto(s)
Reprogramación Celular , Corazón/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Miocitos Cardíacos/fisiología , Regeneración , Proteínas de Pez Cebra/metabolismo , Animales , Cardiomegalia Inducida por el Ejercicio , Desdiferenciación Celular , Diferenciación Celular , Proliferación Celular , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Glucólisis , Corazón/embriología , Ventrículos Cardíacos/citología , Factores de Transcripción de Tipo Kruppel/genética , Desarrollo de Músculos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Vía de Pentosa Fosfato , Pez Cebra , Proteínas de Pez Cebra/genética
18.
Bio Protoc ; 11(2): e3883, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33732772

RESUMEN

Immune tolerance and response are both largely driven by the interactions between the major histocompatibility complex (MHC) expressed by antigen presenting cells (APCs), T-cell receptors (TCRs) on T-cells, and their cognate antigens. Disordered interactions cause the pathogenesis of autoimmune diseases such as type 1 diabetes. Therefore, the identification of antigenic epitopes of autoreactive T-cells leads to important advances in therapeutics and biomarkers. Next-generation sequencing methods allow for the rapid identification of thousands of TCR clonotypes from single T-cells, and thus there is a need to determine cognate antigens for identified TCRs. This protocol describes a reporter system of T-cell activation where the fluorescent reporter protein ZsGreen-1 is driven by nuclear factor of activated T-cells (NFAT) signaling and read by flow cytometry. Reporter T-cells also constitutively express additional pairs of fluorescent proteins as identifiers, allowing for multiplexing of up to eight different reporter T-cell lines simultaneously, each expressing a different TCR of interest and distinguishable by flow cytometry. Once TCR expression cell lines are made they can be used indefinitely for making new T-cell lines with just one transduction step. This multiplexing system permits screening numbers of TCR-antigen interactions that would otherwise be impractical, can be used in a variety of contexts (i.e., screening individual antigens or antigen pools), and can be applied to study any T-cell-MHC-antigen trimolecular interaction.

19.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33542101

RESUMEN

T-cell responses to posttranslationally modified self-antigens are associated with many autoimmune disorders. In type 1 diabetes, hybrid insulin peptides (HIPs) are implicated in the T-cell-mediated destruction of insulin-producing ß-cells within pancreatic islets. The natural history of the disease is such that it allows for the study of T-cell reactivity prior to the onset of clinical symptoms. We hypothesized that CD4 T-cell responses to posttranslationally modified islet peptides precedes diabetes onset. In a cohort of genetically at-risk individuals, we measured longitudinal T-cell responses to native insulin and hybrid insulin peptides. Both proinflammatory (interferon-γ) and antiinflammatory (interluekin-10) cytokine responses to HIPs were more robust than those to native peptides, and the ratio of such responses oscillated between pro- and antiinflammatory over time. However, individuals who developed islet autoantibodies or progressed to clinical type 1 diabetes had predominantly inflammatory T-cell responses to HIPs. Additionally, several HIP T-cell responses correlated to worsening measurements of blood glucose, highlighting the relevance of T-cell responses to posttranslationally modified peptides prior to autoimmune disease development.


Asunto(s)
Autoantígenos/genética , Diabetes Mellitus Tipo 1/genética , Insulina/inmunología , Interferón gamma/genética , Péptidos/genética , Adolescente , Adulto , Autoanticuerpos/genética , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Autoinmunidad/genética , Autoinmunidad/inmunología , Linfocitos T CD4-Positivos/inmunología , Niño , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Progresión de la Enfermedad , Femenino , Humanos , Insulina/genética , Células Secretoras de Insulina/inmunología , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/patología , Masculino , Péptidos/inmunología , Linfocitos T/inmunología , Adulto Joven
20.
J Clin Invest ; 131(9)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33630763

RESUMEN

Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3ß T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation.


Asunto(s)
Beriliosis/inmunología , Berilio/toxicidad , Linfocitos T CD4-Positivos/inmunología , Quimiocina CCL3/inmunología , Quimiocina CCL4/inmunología , Pulmón/inmunología , Animales , Antígenos , Beriliosis/genética , Beriliosis/patología , Linfocitos T CD4-Positivos/patología , Quimiocina CCL3/genética , Quimiocina CCL4/genética , Enfermedad Crónica , Femenino , Cadenas beta de HLA-DP/genética , Cadenas beta de HLA-DP/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Pulmón/patología , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...