Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Plant J ; 118(6): 2296-2317, 2024 Jun.
Article En | MEDLINE | ID: mdl-38459738

Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.


Genotyping Techniques , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , Genotyping Techniques/methods , DNA Primers/genetics , Quantitative Trait Loci/genetics , Oryza/genetics , Triticum/genetics , Solanum lycopersicum/genetics , Chromosome Mapping , DNA, Plant/genetics , Glycine max/genetics , Gene Library , Polymorphism, Genetic , Crops, Agricultural/genetics , Genotype
2.
Foods ; 12(20)2023 Oct 13.
Article En | MEDLINE | ID: mdl-37893662

This study exploits quantitative algorithms of Raman spectroscopy to assess, at the molecular scale, the nutritional quality of individual kernels of the Japanese short-grain rice cultivar Koshihikari in terms of amylose-to-amylopectin ratio, fractions of phenylalanine and tryptophan aromatic amino acid residues, protein-to-carbohydrate ratio, and fractions of protein secondary structures. Statistical assessments on a large number of rice kernels reveal wide distributions of the above nutritional parameters over nominally homogeneous kernel batches. This demonstrates that genetic classifications cannot catch omic fluctuations, which are strongly influenced by a number of extrinsic factors, including the location of individual grass plants within the same rice field and the level of kernel maturation. The possibility of collecting nearly real-time Raman "multi-omic snapshots" of individual rice kernels allows for the automatic (low-cost) differentiation of groups of kernels with restricted nutritional characteristics that could be used in the formulation of functional foods for specific diseases and in positively modulating the intestinal microbiota for protection against bacterial infection and cancer prevention.

3.
Nat Plants ; 9(8): 1236-1251, 2023 08.
Article En | MEDLINE | ID: mdl-37563460

Common buckwheat, Fagopyrum esculentum, is an orphan crop domesticated in southwest China that exhibits heterostylous self-incompatibility. Here we present chromosome-scale assemblies of a self-compatible F. esculentum accession and a self-compatible wild relative, Fagopyrum homotropicum, together with the resequencing of 104 wild and cultivated F. esculentum accessions. Using these genomic data, we report the roles of transposable elements and whole-genome duplications in the evolution of Fagopyrum. In addition, we show that (1) the breakdown of heterostyly occurs through the disruption of a hemizygous gene jointly regulating the style length and female compatibility and (2) southeast Tibet was involved in common buckwheat domestication. Moreover, we obtained mutants conferring the waxy phenotype for the first time in buckwheat. These findings demonstrate the utility of our F. esculentum assembly as a reference genome and promise to accelerate buckwheat research and breeding.


Fagopyrum , Fagopyrum/genetics , Domestication , Plant Breeding , Chromosome Mapping , Base Sequence
4.
Plant Reprod ; 36(4): 355-364, 2023 12.
Article En | MEDLINE | ID: mdl-37278944

The pollen germination rate decreases under various abiotic stresses, such as high-temperature stress, and it is one of the causes of inhibition of plant reproduction. Thus, measuring pollen germination rate is vital for understanding the reproductive ability of plants. However, measuring the pollen germination rate requires much labor when counting pollen. Therefore, we used the Yolov5 machine learning package in order to perform transfer learning and constructed a model that can detect germinated and non-germinated pollen separately. Pollen images of the chili pepper, Capsicum annuum, were used to create this model. Using images with a width of 640 pixels for training constructed a more accurate model than using images with a width of 320 pixels. This model could estimate the pollen germination rate of the F2 population of C. chinense previously studied with high accuracy. In addition, significantly associated gene regions previously detected in genome-wide association studies in this F2 population could again be detected using the pollen germination rate predicted by this model as a trait. Moreover, the model detected rose, tomato, radish, and strawberry pollen grains with similar accuracy to chili pepper. The pollen germination rate could be estimated even for plants other than chili pepper, probably because pollen images were similar among different plant species. We obtained a model that can identify genes related to pollen germination rate through genetic analyses in many plants.


Capsicum , Germination , Genome-Wide Association Study , Reproduction , Pollen/genetics
5.
Plant Cell Physiol ; 63(9): 1230-1241, 2022 Sep 15.
Article En | MEDLINE | ID: mdl-35792499

Grafting-induced flowering is a key phenomenon to understand systemic floral induction caused by florigen. It can also be used as a breeding technique enabling rapid seed production of crops with long generation times. However, the degree of floral induction in grafted plants is often variable. Moreover, it is difficult in some crop species. Here, we explored the factors promoting variability in the grafting-induced flowering of cabbage (Brassica oleracea L. var. capitata), an important vegetable crop with a long generation time, via the quantitative analysis of florigen accumulation. Significant variability in the flowering response of grafted cabbage was observed when rootstocks of different genotypes were used. As reported previously, B. oleracea rootstocks did not induce the flowering of grafted cabbage plants, but radish (Raphanus sativus L.) rootstocks unstably did, depending on the accessions used. Immunoblotting analysis of the FLOWERING LOCUS T (FT) protein, a main component of florigen, revealed that floral induction was quantitatively correlated with the level of accumulated FT protein in the grafted scion. To identify rootstock factors that cause variability in the floral induction of the grafted scion, we investigated FT protein accumulation and flowering response in grafted scions when the transcription levels of FT and the leaf area of rootstocks were altered by vernalization, daylength and leaf trimming treatments. We concluded that increasing the total amount of FT protein produced in the rootstock is important for the stable floral induction of the grafted cabbage, and this can be accomplished by increasing FT transcription and the leaf area of the rootstock.


Arabidopsis Proteins , Arabidopsis , Brassica , Raphanus , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Brassica/genetics , Brassica/metabolism , Florigen/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Plant Breeding , Raphanus/genetics , Raphanus/metabolism
6.
DNA Res ; 29(2)2022 Feb 27.
Article En | MEDLINE | ID: mdl-35412600

MIG-seq (Multiplexed inter-simple sequence repeats genotyping by sequencing) has been developed as a low cost genotyping technology, although the number of polymorphisms obtained is assumed to be minimal, resulting in the low application of this technique to analyses of agricultural plants. We applied MIG-seq to 12 plant species that include various crops and investigated the relationship between genome size and the number of bases that can be stably sequenced. The genome size and the number of loci, which can be sequenced by MIG-seq, are positively correlated. This is due to the linkage between genome size and the number of simple sequence repeats (SSRs) through the genome. The applicability of MIG-seq to population structure analysis, linkage mapping, and quantitative trait loci (QTL) analysis in wheat, which has a relatively large genome, was further evaluated. The results of population structure analysis for tetraploid wheat showed the differences among collection sites and subspecies, which agreed with previous findings. Additionally, in wheat biparental mapping populations, over 3,000 SNPs/indels with low deficiency were detected using MIG-seq, and the QTL analysis was able to detect recognized flowering-related genes. These results revealed the effectiveness of MIG-seq for genomic analysis of agricultural plants with large genomes, including wheat.


Quantitative Trait Loci , Triticum , Chromosome Mapping/methods , Genetic Linkage , Genome, Plant , Genotype , Polymorphism, Single Nucleotide , Triticum/genetics
7.
Food Chem ; 368: 130776, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-34425344

The soon spoiled strawberries need to be classified from healthy fruits in an early stage. In this research, a machine vision system is proposed for inspecting the quality of strawberries using ultraviolet (UV) light based on the excitation-emission matrix (EEM) results. Among the 100 fruits which were harvested and stored under 10 °C condition for 7 days, 7 fruits were confirmed to be spoiled by using a firmness meter. The EEM results show the fluorescence compound contributes to a whitish surface on the spoiled fruits. Based on the EEM results, UV fluorescence images from the bottom view of strawberries were used to classify the spoiled fruits and healthy fruits within 1 day after harvest. These results demonstrate the UV fluorescence imaging can be a fast, non-destructive, and low-cost method for inspecting the soon spoiled fruits. The proposed index related to the spoiling time can be a new indicator for qualifying strawberry.


Fragaria , Fluorescence , Fruit , Ultraviolet Rays
8.
Foods ; 10(12)2021 Nov 29.
Article En | MEDLINE | ID: mdl-34945487

Raman spectroscopy was applied to characterize at the molecular scale the nutritional quality of the Japanese Koshihikari rice cultivar in comparison with other renowned rice cultivars including Carnaroli from Italy, Calrose from the USA, Jasmine rice from Thailand, and Basmati from both India and Pakistan. For comparison, two glutinous (mochigome) cultivars were also investigated. Calibrated and validated Raman analytical algorithms allowed quantitative determinations of: (i) amylopectin and amylose concentrations, (ii) fractions of aromatic amino acids, and (iii) protein content and secondary structure. The Raman assessments non-destructively linked the molecular composition of grains to key nutritional parameters and revealed a complex intertwine of chemical properties. The Koshihikari cultivar was rich in proteins (but with low statistical relevance as compared to other investigated cultivars) and aromatic amino acids. However, it also induced a clearly higher glycemic impact as compared to long-grain cultivars from Asian countries. Complementary to genomics and wet-chemistry analyses, Raman spectroscopy makes non-destructively available factual and data-driven information on rice nutritional characteristics, thus providing customers, dietitian nutritionists, and producers with a solid science-consolidated platform.

9.
Front Nutr ; 8: 663569, 2021.
Article En | MEDLINE | ID: mdl-34249986

The nutritional quality of rice is contingent on a wide spectrum of biochemical characteristics, which essentially depend on rice genome, but are also greatly affected by growing/environmental conditions and aging during storage. The genetic basis and related identification of genes have widely been studied and rationally linked to accumulation of micronutrients in grains. However, genetic classifications cannot catch quality fluctuations arising from interannual, environmental, and storage conditions. Here, we propose a quantitative spectroscopic approach to analyze rice nutritional quality based on Raman spectroscopy, and disclose analytical algorithms for the determination of: (i) amylopectin and amylose concentrations, (ii) aromatic amino acids, (iii) protein content and structure, and (iv) chemical residues. The proposed Raman algorithms directly link to the molecular composition of grains and allow fast/non-destructive determination of key nutritional parameters with minimal sample preparation. Building upon spectroscopic information at the molecular level, we newly propose to represent the nutritional quality of labeled rice products with a barcode specially tailored on the Raman spectrum. The Raman barcode, which can be stored in databases promptly consultable with barcode scanners, could be linked to diet applications (apps) to enable a rapid, factual, and unequivocal product identification based on direct molecular screening.

10.
Planta ; 253(6): 132, 2021 May 31.
Article En | MEDLINE | ID: mdl-34059984

MAIN CONCLUSION: The distribution of early flowering alleles of VRN-A3 was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat. In wheat (Triticum spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of VRN-A3 with 7- and 25-bp insertions in the promoter region (Vrn-A3a-h1) has recently been reported from the analysis of an emmer wheat (Triticum turgidum L. ssp. dicoccum) accession, TN26. This early flowering allele of VRN-A3 might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of VRN-A3 in worldwide wheat collection. From sequence analysis, we identified six VRN-A3 alleles with the 7- and 25-bp insertions, namely, Vrn-A3a-h2, Vrn-A3a-h3, Vrn-A3a-h4, Vrn-A3a-h5, Vrn-A3a-h6, and Vrn-A3c-h2 from wild emmer wheat, while we identified two VRN-A3 alleles with these insertions, Vrn-A3a-h2 and Vrn-A3c-h1 from cultivated tetraploid and hexaploid wheat species in addition to Vrn-A3a-h1. Among VRN-A3 alleles distributed in cultivated wheat, we found that Vrn-A3a-h2 promoted early heading, whereas Vrn-A3c-h1 did not affect heading time. Our analysis showed that the distribution of early flowering alleles of VRN-A3 dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of VRN-A3 contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum (T. turgidum L. ssp. durum) and bread wheat (T. aestivum L. ssp. aestivum) accessions with these early flowering alleles. Our findings indicated that Vrn-A3a-h1 and Vrn-A3a-h2 were useful for breeding of early flowering cultivars in durum and bread wheat varieties.


Plant Breeding , Triticum , Alleles , Ethiopia , Polyploidy , Triticum/genetics
11.
Food Chem ; 354: 129434, 2021 Aug 30.
Article En | MEDLINE | ID: mdl-33756327

Analytical algorithms based on Raman spectroscopy are proposed for the determination of amylopectin and amylose concentrations in polished white rice, and applied to characterize and compare linear and branched polysaccharide structures in nine different types of Japanese rice. A selected algorithm used symmetric bending vibrations of the COC glycosidic linkage from a relatively narrow spectral zone between 830 and 895 cm-1. It specifically compared the intensity of Raman signals from two types of bending common to both starch components (C1-O-C5 and C1-O-C4 at 868 and 855 cm-1, respectively) and that at the branch point peculiar to amylopectin (C1-O-C6 at 844 cm-1). Raman data were confronted with data collected by conventional amylose-iodine colorimetry method. Consistency was found between Raman and colorimetric methods over the entire series of tested rice cultivars, thus validating the newly proposed spectroscopic algorithm. The amylose content of the tested rice species broadly varied between 1.2 and 20.4%. The proposed Raman algorithm allows fast and nondestructive determination of amylose content in rice with minimal sample preparation. These characteristics might be key in the development of portable Raman devices capable to promptly screen polysaccharides in different rice cultivars with respect to their interannual and plantation-related fluctuations.


Amylose/analysis , Oryza/metabolism , Algorithms , Amylopectin/chemistry , Colorimetry , Iodine/chemistry , Japan , Spectrum Analysis, Raman , Starch/chemistry
12.
Plant Cell Physiol ; 62(1): 8-27, 2021 Mar 25.
Article En | MEDLINE | ID: mdl-33244607

Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.


Disease Resistance/genetics , Flowers/growth & development , Genes, Plant/genetics , Genome, Plant/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Cytogenetics , Asia, Eastern , Flowers/genetics , Fusarium , Genes, Plant/physiology , Genetic Association Studies , Genetic Variation/genetics , Genetic Variation/physiology , Genome, Plant/physiology , Genotype , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Triticum/growth & development , Triticum/immunology , Triticum/physiology
13.
Theor Appl Genet ; 131(10): 2037-2053, 2018 Oct.
Article En | MEDLINE | ID: mdl-29961103

KEY MESSAGE: We identified a novel allele of the Vrn-A3 gene that is associated with an early flowering trait in wheat. This trait is caused by a cis-element GATA box in Vrn-A3. To identify novel flowering genes in wheat, we investigated days from germination to heading (DGH) in tetraploid wheat accessions. We found that the tetraploid variety Triticum turgidum L. ssp. dicoccum (TN26) harbors unknown genes that surpass the earliness effect of the early flowering allele Ppd-A1a harbored by TN28 (T. turgidum L. ssp. turgidum conv. pyramidale). Using recombinant inbred lines resulting from a cross between TN26 and TN28, we performed a quantitative trait locus (QTL) analysis for DGH. We identified a QTL for earliness in TN26 on chromosome 7AS, the chromosome on which Vrn-A3 is located. By sequence analysis for the Vrn-A3 locus in both TN26 and TN28, we identified a 7-bp insertion that included a cis-element GATA box sequence at the promoter region of the Vrn-A3 locus of TN26. Based on an expression analysis using sister lines for Vrn-A3, we suggest that the early flowering trait of TN26 was caused by the GATA box in Vrn-A3. In addition, we identified tetraploid wheat as a useful genetic resource for wheat breeding.


DNA Transposable Elements , Flowers/physiology , Quantitative Trait Loci , Triticum/genetics , Alleles , Crosses, Genetic , Genes, Plant , Phenotype , Plant Breeding , Promoter Regions, Genetic , Tetraploidy , Triticum/physiology
14.
BMC Plant Biol ; 18(1): 72, 2018 Apr 27.
Article En | MEDLINE | ID: mdl-29699487

BACKGROUND: Parthenocarpy is a desired trait in tomato because it can overcome problems with fruit setting under unfavorable environmental conditions. A parthenocarpic tomato cultivar, 'MPK-1', with a parthenocarpic gene, Pat-k, exhibits stable parthenocarpy that produces few seeds. Because 'MPK-1' produces few seeds, seedlings are propagated inefficiently via cuttings. It was reported that Pat-k is located on chromosome 1. However, the gene had not been isolated and the relationship between the parthenocarpy and low seed set in 'MPK-1' remained unclear. In this study, we isolated Pat-k to clarify the relationship between parthenocarpy and low seed set in 'MPK-1'. RESULTS: Using quantitative trait locus (QTL) analysis for parthenocarpy and seed production, we detected a major QTL for each trait on nearly the same region of the Pat-k locus on chromosome 1. To isolate Pat-k, we performed fine mapping using an F4 population following the cross between a non-parthenocarpic cultivar, 'Micro-Tom' and 'MPK-1'. The results showed that Pat-k was located in the 529 kb interval between two markers, where 60 genes exist. By using data from a whole genome re-sequencing and genome sequence analysis of 'MPK-1', we could identify that the SlAGAMOUS-LIKE 6 (SlAGL6) gene of 'MPK-1' was mutated by a retrotransposon insertion. The transcript level of SlAGL6 was significantly lower in ovaries of 'MPK-1' than a non-parthenocarpic cultivar. From these results, we could conclude that Pat-k is SlAGL6, and its down-regulation in 'MPK-1' causes parthenocarpy and low seed set. In addition, we observed abnormal micropyles only in plants homozygous for the 'MPK-1' allele at the Pat-k/SlAGL6 locus. This result suggests that Pat-k/SlAGL6 is also related to ovule formation and that the low seed set in 'MPK-1' is likely caused by abnormal ovule formation through down-regulation of Pat-k/SlAGL6. CONCLUSIONS: Pat-k is identical to SlAGL6, and its down-regulation causes parthenocarpy and low seed set in 'MPK-1'. Moreover, down-regulation of Pat-k/SlAGL6 could cause abnormal ovule formation, leading to a reduction in the number of seeds.


Fruit/genetics , Genes, Plant/genetics , Parthenogenesis/genetics , Solanum lycopersicum/genetics , Chromosome Mapping , Flowers/growth & development , Flowers/ultrastructure , Fruit/growth & development , Genes, Plant/physiology , Genome, Plant/genetics , Lod Score , Solanum lycopersicum/growth & development , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Seeds/growth & development , Sequence Analysis, DNA
15.
Breed Sci ; 64(4): 409-15, 2014 Dec.
Article En | MEDLINE | ID: mdl-25914597

Black soybeans have been used as a food source and also in traditional medicine because their seed coats contain natural phenolic compounds such as proanthocyanidin and anthocyanin. The objective of this research is to reveal the genetic variation in the phenolic compound contents (PCCs) of seed coats in 227 black soybean cultivars, most of which were Japanese landraces and cultivars. Total phenolics were extracted from seed coats using an acidic acetone reagent and the proanthocyanidin content, monomeric anthocyanin content, total flavonoids content, total phenolics content, and radical scavenging activity were measured. The cultivars showed wide genetic variation in PCCs. Each of the contents was highly correlated with one another, and was closely associated with radical scavenging activity. PCCs were also moderately associated by flowering date but not associated by seed weight. Cultivars with purple flowers had a tendency to produce higher PCCs compared with cultivars with white flowers, suggesting that the W1 locus for flower color can affect phenolic compound composition and content. Our results suggest that developing black soybean cultivars with high functional phenolic compounds activity is feasible.

16.
Theor Appl Genet ; 119(1): 85-91, 2009 Jun.
Article En | MEDLINE | ID: mdl-19407986

The breeding of japonica varieties with erect-pose panicle (EP) has recently progressed in the northern part of China, because these varieties exhibit a far higher grain yield than the varieties with normal-pose panicle (NP). A genetic analysis using the F(2) population from the cross between Liaojing5, the first japonica EP variety in China, and the Japanese japonica NP variety Toyonishiki revealed that EP is governed by a single dominant gene EP. Based on previous studies, map-based cloning of EP locus was conducted using Liaojing5, Toyonishiki, their F(2) population, and a pair of near-isogenic lines for EP locus (ZF14 and WF14) derived from the cross between the two varieties; consequently, the STS marker H90 was found to completely cosegregate with panicle pose. The H90 is located in the coding sequence AK101247 in the database, and the AK101247 of Liaojing5 has a 12 bp sequence in exon 5 replaced with a 637 bp sequence of its wild type allele. It was therefore considered that the AK101247 encodes the protein of the wild type allele at EP locus, and that the sequence substitution in exon 5 of Liaojing5 is crucial for expression of the EP phenotype. The effects of EP gene on agronomic traits were investigated using two pairs of near-isogenic lines (ZF6 vs. WF6 and ZF14 vs. WF14) derived from the cross between the two varieties. Experimental results showed that EP gene markedly enhanced grain yield, chiefly by increasing number of secondary branches and number of grains on the secondary branch. EP gene also produced a remarkable increase in grain density.


Crops, Agricultural/genetics , Genes, Plant , Oryza/genetics , Plant Structures/genetics , Chromosome Mapping , Chromosomes, Plant , Crops, Agricultural/growth & development , Genotype , Oryza/anatomy & histology , Oryza/growth & development , Phenotype , Plant Structures/anatomy & histology , Polymorphism, Genetic , Random Allocation
17.
DNA Res ; 16(2): 131-40, 2009 Apr.
Article En | MEDLINE | ID: mdl-19270311

Although quantitative traits loci (QTL) analysis has been widely performed to isolate agronomically important genes, it has been difficult to obtain molecular markers between individuals with similar phenotypes (assortative mating). Recently, the miniature inverted-repeat transposable element mPing was shown to be active in the japonica strain Gimbozu EG4 where it had accumulated more than 1000 copies. In contrast, most other japonicas, including Nipponbare, have 50 or fewer mPing insertions in their genome. In this study we have exploited the polymorphism of mPing insertion sites to generate 150 PCR markers in a cross between the closely related japonicas, Nipponbare x Gimbozu (EG4). These new markers were distributed in genic regions of the whole genome and showed significantly higher polymorphism (150 of 183) than all other molecular markers tested including short sequence repeat markers (46 of 661). In addition, we performed QTL analysis with these markers using recombinant inbred lines derived from Nipponbare x Gimbozu EG4, and successfully mapped a locus involved in heading date on the short arm of chromosome 6. Moreover, we could easily map two novel loci involved in the culm length on the short arms of chromosomes 3 and 10.


DNA Transposable Elements/genetics , DNA, Plant/genetics , Genetic Markers/genetics , Oryza/genetics , Binding Sites/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Crosses, Genetic , Mutagenesis, Insertional , Quantitative Trait Loci/genetics
18.
Plant Sci ; 176(4): 514-21, 2009 Apr.
Article En | MEDLINE | ID: mdl-26493141

In soybean (Glycine max [L.] Merr.), varieties with seed-flooding tolerance at the geminating stage are desirable for breeding in countries with much rainfall at sowing time. Our study revealed great intervarietal variation in seed-flooding tolerance as evaluated by germination rate (GR) and normal seedling rate (NS). Pigmented seed coat and small seed weight tended to give a positive effect on seed-flooding tolerance. Subsequently, QTL analysis of GR and NS were performed and a total of four QTLs were detected. Among them, Sft1 on the linkage group H (LG_H) exhibited a large effect on GR after a 24-h treatment; however, Sft2 near the I locus on LG_A2 involved in seed coat pigmentation exhibited the largest effect on seed-flooding tolerance. Sft1, Sft3 and Sft4 were independent of seed coat color and seed weight. Based on the results, we discussed the physiological effects of genetic factors responsible for seed-flooding tolerance in soybean.

19.
Nature ; 421(6919): 170-2, 2003 Jan 09.
Article En | MEDLINE | ID: mdl-12520304

Rice (Oryza sativa L.) is an important crop worldwide and, with the availability of the draft sequence, a useful model for analysing the genome structure of grasses. To practice efficient rice breeding through genetic engineering techniques, it is important to identify the economically important genes in this crop. The use of mobile transposons as gene tags in intact plants is a powerful tool for functional analysis because transposon insertions often inactivate genes. Here we identify an active rice transposon named miniature Ping (mPing) through analysis of the mutability of a slender mutation of the glume-the seed structure that encloses and determines the shape of the grain. The mPing transposon is inserted in the slender glume (slg) mutant allele but not in the wild-type allele. Search of the O. sativa variety Nipponbare genome identified 34 sequences with high nucleotide similarity to mPing, indicating that mPing constitutes a family of transposon elements. Excision of mPing from slg plants results in reversion to a wild-type phenotype. The mobility of the transposon mPing in intact rice plants represents a useful alternative tool for the functional analysis of rice genes.


DNA Transposable Elements/genetics , Genes, Plant/genetics , Genome, Plant , Mutagenesis, Insertional/genetics , Oryza/genetics , Alleles , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Introns/genetics , Molecular Sequence Data , Mutation/genetics , Open Reading Frames/genetics , Pedigree
...