Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543944

RESUMEN

Immunization with various Leishmania species lacking centrin induces robust immunity against a homologous and heterologous virulent challenge, making centrin mutants a putative candidate for a leishmaniasis vaccine. Centrin is a calcium-binding cytoskeletal protein involved in centrosome duplication in higher eukaryotes and Leishmania spp. lacking centrin are unable to replicate in vivo and are non-pathogenic. We developed a centrin-deficient Leishmania braziliensis (LbCen-/-) cell line and confirmed its impaired survival following phagocytosis by macrophages. Upon experimental inoculation into BALB/c mice, LbCen-/- failed to induce lesions and parasites were rapidly eliminated. The immune response following inoculation with LbCen-/- was characterized by a mixed IFN-γ, IL-4, and IL-10 response and did not confer protection against L. braziliensis infection, distinct from L. major, L. donovani, and L mexicana centrin-deficient mutants. A prime-boost strategy also did not lead to a protective immune response against homologous challenge. On the contrary, immunization with centrin-deficient L. donovani (LdonCen-/-) cross-protected against L. braziliensis challenge, illustrating the ability of LdonCen-/- to induce the Th1-dominant protective immunity needed for leishmaniasis control. In conclusion, while centrin deficiency in L. braziliensis causes attenuation of virulence, and disrupts the ability to cause disease, it fails to stimulate a protective immune response.

2.
iScience ; 26(12): 108502, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125023

RESUMEN

Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.

3.
iScience ; 26(9): 107594, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37744404

RESUMEN

Leishmaniasis is a tropical disease prevalent in 90 countries. Presently, there is no approved vaccine for human use. We developed a live attenuated L. mexicana Cen-/-(LmexCen-/-) strain as a vaccine candidate that showed excellent efficacy, characterized by reduced Th2 and enhanced Th1 responses in C57BL/6 and BALB/c mice, respectively, compared to wild-type L. mexicana (LmexWT) infection. Toward understanding the immune mechanisms of protection, we applied untargeted mass spectrometric analysis to LmexCen-/- and LmexWT infections. Data showed enrichment of the pentose phosphate pathway (PPP) in ears immunized with LmexCen-/-versus naive and LmexWT infection. PPP promotes M1 polarization in macrophages, suggesting a switch to a pro-inflammatory phenotype following LmexCen-/- inoculation. Accordingly, PPP inhibition in macrophages infected with LmexCen-/- reduced the production of nitric oxide and interleukin (IL)-1ß, hallmarks of classical activation. Overall, our study revealed the immune regulatory mechanisms that may be critical for the induction of protective immunity.

4.
NPJ Vaccines ; 7(1): 157, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463228

RESUMEN

Leishmaniasis is one of the top neglected tropical diseases with significant morbidity and mortality in low and middle-income countries (LMIC). However, this disease is also spreading in the developed world. Currently, there is a lack of effective strategies to control this disease. Vaccination can be an effective measure to control leishmaniasis and has the potential to achieve disease elimination. Recently, we have generated centrin gene-deleted new world L. mexicana (LmexCen-/-) parasites using CRISPR/Cas9 and showed that they protect mice against a homologous L. mexicana infection that causes cutaneous disease. In this study, we tested whether LmexCen-/- parasites can also protect against visceral leishmaniasis caused by L. donovani in a hamster model. We showed that immunization with LmexCen-/- parasites is safe and does not cause lesions. Furthermore, such immunization conferred protection against visceral leishmaniasis caused by a needle-initiated L. donovani challenge, as indicated by a significant reduction in the parasite burdens in the spleen and liver as well as reduced mortality. Similar control of parasite burden was also observed against a sand fly mediated L. donovani challenge. Importantly, immunization with LmexCen-/- down-regulated the disease promoting cytokines IL-10 and IL-4 and increased pro-inflammatory cytokine IFN-γ resulting in higher IFN-γ/IL-10 and IFN-γ/IL4 ratios compared to non-immunized animals. LmexCen-/- immunization also resulted in long-lasting protection against L. donovani infection. Taken together, our study demonstrates that immunization with LmexCen-/- parasites is safe and efficacious against the Old World visceral leishmaniasis.

5.
NPJ Vaccines ; 7(1): 32, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236861

RESUMEN

Leishmaniasis is a neglected protozoan disease affecting over 12 million people globally with no approved vaccines for human use. New World cutaneous leishmaniasis (CL) caused by L. mexicana is characterized by the development of chronic non-healing skin lesions. Using the CRISPR/Cas9 technique, we have generated live attenuated centrin knockout L. mexicana (LmexCen-/-) parasites. Centrin is a cytoskeletal protein important for cellular division in eukaryotes and, in Leishmania, is required only for intracellular amastigote replication. We have investigated the safety and immunogenicity characteristics of LmexCen-/- parasites by evaluating their survival and the cytokine production in bone-marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) in vitro. Our data shows that LmexCen-/- amastigotes present a growth defect, which results in significantly lower parasitic burdens and increased protective cytokine production in infected BMDMs and BMDCs, compared to the wild type (WT) parasites. We have also determined the safety and efficacy of LmexCen-/- in vivo using experimental murine models of L. mexicana. We demonstrate that LmexCen-/- parasites are safe and do not cause lesions in susceptible mouse models. Immunization with LmexCen-/- is also efficacious against challenge with WT L. mexicana parasites in genetically different BALB/c and C57BL/6 mouse models. Vaccinated mice did not develop cutaneous lesions, displayed protective immunity, and showed significantly lower parasitic burdens at the infection site and draining lymph nodes compared to the control group. Overall, we demonstrate that LmexCen-/- parasites are safe and efficacious against New World cutaneous leishmaniasis in pre-clinical models.

6.
MMWR Morb Mortal Wkly Rep ; 65(24): 627-8, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27337368

RESUMEN

Transfusion-transmitted infections have been documented for several arboviruses, including West Nile and dengue viruses (1). Zika virus, a flavivirus transmitted primarily by Aedes aegypti mosquitoes that has been identified as a cause of congenital microcephaly and other serious brain defects (2), became recognized as a potential threat to blood safety after reports from a 2013-2014 outbreak in French Polynesia. Blood safety concerns were based on very high infection incidence in the population at large during epidemics, the high percentage of persons with asymptomatic infection, the high proportion of blood donations with evidence of Zika virus nucleic acid upon retrospective testing, and an estimated 7-10-day period of viremia (3). At least one instance of transfusion transmission of Zika virus has been documented in Brazil after the virus emerged there, likely in 2014 (4). Rapid epidemic spread has followed to other areas of the Americas, including Puerto Rico.


Asunto(s)
Seguridad de la Sangre/métodos , Brotes de Enfermedades/prevención & control , Tamizaje Masivo , Infección por el Virus Zika/prevención & control , Humanos , Puerto Rico/epidemiología
7.
Parasit Vectors ; 9: 250, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-27136900

RESUMEN

BACKGROUND: Live attenuated Leishmania donovani parasites as LdCen(-/-) were shown to confer protective immunity against Leishmania infection in mice, hamsters, and dogs. Strong immunogenicity in dogs vaccinated with LdCen(-/-) has been previously reported, including increased antibody response favoring Th1 response lymphoproliferative responses, CD4(+) and CD8(+) T-cells activation, increased levels of Th1 and reduction of Th2 cytokines, in addition to a significant reduction in parasite burden after 18 and 24 months post virulent parasite challenge. METHODS: Aimed at validating a new method using in vitro co-culture systems with macrophages and purified CD4(+) or CD8(+) or CD4(+):CD8(+) T-cells of immunized dogs with both LdCen(-/-) and Leishmune® to assess microbicide capacity of macrophages and the immune response profile as the production of IFN-γ, TNF-α, IL-12, IL-4 and IL-10 cytokines. RESULTS AND DISCUSSION: Our data showed co-cultures of macrophages and purified T-cells from dogs immunized with LdCen(-/-) and challenged with L. infantum were able to identify high microbicidal activity, especially in the co-culture using CD4(+) T-cells, as compared to the Leishmune® group. Similarly, co-cultures with CD8(+) T-cells or CD4(+):CD8(+) T-cells in both experimental groups were able to detect a reduction in the parasite burden in L. infantum infected macrophages. Moreover, co-cultures using CD4(+) or CD8(+) or CD4(+):CD8(+) T-cells from immunized dogs with both LdCen(-/-) and Leishmune® were able to identify higher levels of IFN-γ and IL-12 cytokines, reduced levels of IL-4 and IL-10, and a higher IFN-γ/IL-10 ratio. While the highest IFN-γ levels and IFN-γ/IL-10 ratio were the hallmarks of LdCen(-/-) group in the co-culture using CD4(+) T-cells, resulting in strong reduction of parasitism, the Leishmune® immunization presented a differential production of TNF-α in the co-culture using CD4(+):CD8(+) T-cells. CONCLUSION: The distinct conditions of co-culture systems were validated and able to detect the induction of immune protection. The method described in this study applied a new, more accurate approach and was able to yield laboratory parameters useful to test and monitor the immunogenicity and efficacy of Leishmania vaccines in dogs.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Enfermedades de los Perros/prevención & control , Leishmania donovani/inmunología , Vacunas contra la Leishmaniasis/inmunología , Macrófagos/fisiología , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Animales , Técnicas de Cocultivo , Citocinas/genética , Citocinas/metabolismo , Enfermedades de los Perros/parasitología , Perros , Femenino , Eliminación de Gen , Regulación de la Expresión Génica/inmunología , Masculino
8.
Vaccine ; 33(2): 280-8, 2015 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-25475955

RESUMEN

Live attenuated Leishmania donovani parasites such as LdCen(-/-) have been shown elicit protective immunity against leishmanial infection in mice and hamster models. Previously, we have reported on the induction of strong immunogenicity in dogs upon vaccination with LdCen(-/-) including an increase in immunoglobulin isotypes, higher lymphoproliferative response, higher frequencies of activated CD4(+) and CD8(+) T cells, IFN-γ production by CD8(+) T cells, increased secretion of TNF-α and IL-12/IL-23p40 and, finally, decreased secretion of IL-4. To further explore the potential of LdCen(-/-) parasites as vaccine candidates, we performed a 24-month follow up of LdCen(-/-) immunized dogs after challenge with virulent Leishmania infantum, aiming determination of parasite burden by qPCR, antibody production (ELISA) and cellular responses (T cell activation and cytokine production) by flow cytometry and sandwich ELISA. Our data demonstrated that vaccination with a single dose of LdCen(-/-) (without any adjuvant) resulted in the reduction of up to 87.3% of parasite burden after 18 months of virulent challenge. These results are comparable to those obtained with commercially available vaccine in Brazil (Leishmune(®)). The protection was associated with antibody production and CD4(+) and CD8(+) proliferative responses, as well as T cell activation and significantly higher production of IFN-γ, IL-12/IL-23p40 and TNF-α, which was comparable to responses induced by immunization with Leishmune(®), with significant differences when compared to control animals (Placebo). Moreover, only animals immunized with LdCen(-/-) expressed lower levels of IL-4 when compared to animals vaccinated either with Leishmune(®) or PBS. Our results support further studies aiming to demonstrate the potential of genetically modified live attenuated L. donovani vaccine to control L. infantum transmission in endemic areas for CVL.


Asunto(s)
Enfermedades de los Perros/prevención & control , Leishmania donovani/genética , Leishmania donovani/inmunología , Leishmania infantum/inmunología , Vacunas contra la Leishmaniasis/administración & dosificación , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/veterinaria , Animales , Anticuerpos Antiprotozoarios/sangre , Brasil , Modelos Animales de Enfermedad , Enfermedades de los Perros/inmunología , Perros , Ensayo de Inmunoadsorción Enzimática , Estudios de Seguimiento , Eliminación de Gen , Interferón gamma/sangre , Interleucina-12/sangre , Interleucina-4/sangre , Leishmaniasis Visceral/prevención & control , Activación de Linfocitos , Carga de Parásitos/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/sangre , Vacunación/veterinaria , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
9.
J Immunol ; 193(7): 3513-27, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25156362

RESUMEN

Previously, we showed that genetically modified live-attenuated Leishmania donovani parasite cell lines (LdCen(-/-) and Ldp27(-/-)) induce a strong cellular immunity and provide protection against visceral leishmaniasis in mice. In this study, we explored the mechanism of cross-protection against cutaneous lesion-causing Leishmania mexicana. Upon challenge with wild-type L. mexicana, mice immunized either for short or long periods showed significant protection. Immunohistochemical analysis of ears from immunized/challenged mice exhibited significant influx of macrophages, as well as cells expressing MHC class II and inducible NO synthase, suggesting an induction of potent host-protective proinflammatory responses. In contrast, substantial inhibition of IL-10, IL-4, and IL-13 expression and the absence of degranulated mast cells and less influx of eosinophils within the ears of immunized/challenged mice suggested a controlled anti-inflammatory response. L. mexicana Ag-stimulated lymph node cell culture from the immunized/challenged mice revealed induction of IFN-γ secretion by the CD4 and CD8 T cells compared with non-immunized/challenged mice. We also observed suppression of Th2 cytokines in the culture supernatants of immunized/challenged lymph nodes compared with non-immunized/challenged mice. Adoptively transferred total T cells from immunized mice conferred strong protection in recipient mice against L. mexicana infection, suggesting that attenuated L. donovani can provide protection against heterologous L. mexicana parasites by induction of a strong T cell response. Furthermore, bone marrow-derived dendritic cells infected with LdCen(-/-) and Ldp27(-/-) parasites were capable of inducing a strong proinflammatory response leading to the proliferation of Th1 cells. These studies demonstrate the potential of live-attenuated L. donovani parasites as pan-Leishmania species vaccines.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/efectos de los fármacos , Leishmania donovani/inmunología , Leishmania mexicana/inmunología , Vacunas contra la Leishmaniasis/farmacología , Leishmaniasis Cutánea/prevención & control , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Reacciones Cruzadas/efectos de los fármacos , Citocinas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunidad Celular/genética , Leishmania donovani/genética , Vacunas contra la Leishmaniasis/genética , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/patología , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Vacunas Atenuadas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA