Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667178

RESUMEN

As a potent detection method for cancer biomarkers in physiological fluid, a colorimetric and electrochemical dual-mode sensing platform for breast cancer biomarker thioredoxin 1 (TRX1) was developed based on the excellent peroxidase-mimicking and electrocatalytic property of Prussian blue nanoparticles (PBNPs). PBNPs were hydrothermally synthesized using K3[Fe(CN)6] as a precursor and polyvinylpyrrolidone (PVP) as a capping agent. The synthesized spherical PBNPs showed a significant peroxidase-like activity, having approximately 20 and 60% lower Km values for 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, respectively, compared to those of horseradish peroxidase (HRP). The PBNPs also enhanced the electron transfer on the electrode surface. Based on the beneficial features, PBNPs were used to detect target TRX1 via sandwich-type immunoassay procedures. Using the strategies, TRX1 was selectively and sensitively detected, yielding limit of detection (LOD) values as low as 9.0 and 6.5 ng mL-1 via colorimetric and electrochemical approaches, respectively, with a linear range of 10-50 ng mL-1 in both strategies. The PBNP-based TRX1 immunoassays also exhibited a high degree of precision when applied to real human serum samples, demonstrating significant potentials to replace conventional HRP-based immunoassay systems into rapid, robust, reliable, and convenient dual-mode assay systems which can be widely utilized for the identification of important target molecules including cancer biomarkers.


Asunto(s)
Bencidinas , Técnicas Biosensibles , Colorimetría , Técnicas Electroquímicas , Ferrocianuros , Nanopartículas , Tiorredoxinas , Ferrocianuros/química , Humanos , Nanopartículas/química , Límite de Detección , Peróxido de Hidrógeno , Catálisis , Peroxidasa/química , Inmunoensayo
2.
Opt Express ; 31(6): 10500-10511, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157595

RESUMEN

Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technique. Here, we present a method to integrate optical coherence tomography (OCT) and SECM for complementary imaging by adding orthogonal scanning to the SECM configuration. The co-registration of SECM and OCT is automatic, as all system components are shared in the same order, eliminating the need for additional optical alignment. The proposed multimode imaging system is compact and cost-effective while providing the benefits of imaging aiming and guidance. Furthermore, speckle noise can be suppressed by averaging the speckles generated by shifting the spectral-encoded field in the direction of dispersion. Using a near infrared (NIR) card and a biological sample, we demonstrated the capability of the proposed system by showing SECM imaging at depths of interest guided by the OCT in real time and speckle noise reduction. Interfaced multimodal imaging of SECM and OCT was implemented at a speed of approximately 7 frames/s using fast-switching technology and GPU processing.

3.
Sci Rep ; 13(1): 3625, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869084

RESUMEN

Biochip-based research is currently evolving into a three-dimensional and large-scale basis similar to the in vivo microenvironment. For the long-term live and high-resolution imaging in these specimens, nonlinear microscopy capable of label-free and multiscale imaging is becoming increasingly important. Combination with non-destructive contrast imaging will be useful for effectively locating regions of interest (ROI) in large specimens and consequently minimizing photodamage. In this study, a label-free photothermal optical coherence microscopy (OCM) serves as a new approach to locate the desired ROI within biological samples which are under investigation by multiphoton microscopy (MPM). The weak photothermal perturbation in sample by the MPM laser with reduced power was detected at the endogenous photothermal particles within the ROI using the highly sensitive phase-differentiated photothermal (PD-PT) OCM. By monitoring the temporal change of the photothermal response signal of the PD-PT OCM, the hotspot generated within the sample focused by the MPM laser was located on the ROI. Combined with automated sample movement in the x-y axis, the focal plane of MPM could be effectively navigated to the desired portion of a volumetric sample for high-resolution targeted MPM imaging. We demonstrated the feasibility of the proposed method in second harmonic generation microscopy using two phantom samples and a biological sample, a fixed insect on microscope slide, with dimensions of 4 mm wide, 4 mm long, and 1 mm thick.


Asunto(s)
Microscopía , Movimiento , Fantasmas de Imagen
4.
Adv Healthc Mater ; 10(18): e2100636, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34235891

RESUMEN

Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near-infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early-stage human breast cancer by regulating the heat generation of the AuNRs in the tissue.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Nanotubos , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Femenino , Oro , Humanos , Nanopartículas del Metal/uso terapéutico , Fototerapia
5.
ACS Biomater Sci Eng ; 5(8): 3808-3816, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-33438421

RESUMEN

Understanding how the mechanical microenvironment affects cardiomyocyte development is crucial to the creation of in vitro models for studying heart physiology and pathophysiology. This knowledge will also facilitate the design of biomaterials and tissue scaffolds utilized in the generation of functional tissue constructs for regenerative medicine and drug screening applications. Here, plasma lithography patterning of elastomeric substrates is exploited for creating microtissues composed of neonatal cardiomyocytes and investigating their attributes in different mechanical microenvironments. Restriction of the cellular outgrowth in line patterns results in cardiomyocytes developing into multicellular clusters and collectively adapting to geometric confinement and substrate stiffness. Immunofluorescence microscopy, video microscopy, and force spectroscopy show that the size and shape of the cardiomyocyte clusters, as well as sarcomere length, fiber alignment, beating amplitude, and beating frequency of the cardiomyocytes, are regulated by the microenvironmental cues. Computational analysis reveals that the mechanical stress at the cluster-substrate interface strongly correlates with the characteristics of the cardiomyocytes. Taken together, our results underscore a collective mechanoadaptation scheme in cardiac development.

6.
Sensors (Basel) ; 17(12)2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29189725

RESUMEN

In this paper, we report on a confocal thermoreflectance imaging system that can examine the thermal characteristics of microelectronic devices by penetrating the backside of a device through the substrate. In this system, the local reflectivity variations due to heat generation in the device are measured point by point by a laser scanning confocal microscope capable of eliminating out-of-focus reflections and the thermoreflectance is extracted via Fourier-domain signal processing. In comparison to the conventional widefield thermoreflectance microscope, the proposed laser scanning confocal thermoreflectance microscope improves the thermoreflectance sensitivity by ~23 times and the spatial resolution by ~25% in backside thermoreflectance measurements.

7.
Sensors (Basel) ; 17(10)2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027955

RESUMEN

Micro-electronic devices are increasingly incorporating miniature multi-layered integrated architectures. However, the localization of faults in three-dimensional structure remains challenging. This study involved the experimental and numerical estimation of the depth of a thermally active heating source buried in multi-layered silicon wafer architecture by using both phase information from an infrared microscopy and finite element simulation. Infrared images were acquired and real-time processed by a lock-in method. It is well known that the lock-in method can increasingly improve detection performance by enhancing the spatial and thermal resolution of measurements. Operational principle of the lock-in method is discussed, and it is represented that phase shift of the thermal emission from a silicon wafer stacked heat source chip (SSHSC) specimen can provide good metrics for the depth of the heat source buried in SSHSCs. Depth was also estimated by analyzing the transient thermal responses using the coupled electro-thermal simulations. Furthermore, the effects of the volumetric heat source configuration mimicking the 3D through silicon via integration package were investigated. Both the infrared microscopic imaging with the lock-in method and FE simulation were potentially useful for 3D isolation of exothermic faults and their depth estimation for multi-layered structures, especially in packaged semiconductors.

8.
Sci Rep ; 6: 29749, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27460294

RESUMEN

To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.


Asunto(s)
Materiales Biomiméticos/química , Neoplasias de la Mama/metabolismo , Movimiento Celular , Transducción de Señal , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos
9.
Proc Natl Acad Sci U S A ; 112(44): 13573-8, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26487682

RESUMEN

Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cardiomiopatía Dilatada/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Citoesqueleto de Actina/genética , Animales , Animales Recién Nacidos , Cardiomiopatía Dilatada/embriología , Cardiomiopatía Dilatada/genética , Células Cultivadas , Proteínas del Citoesqueleto/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Genes Letales/genética , Corazón/embriología , Corazón/fisiopatología , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Contracción Muscular/genética , Contracción Muscular/fisiología , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miocardio/patología , Miocardio/ultraestructura , Sarcómeros/genética , Sarcómeros/metabolismo , Análisis de Supervivencia
10.
J Lab Autom ; 20(3): 201-15, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25385716

RESUMEN

Most current drug screening assays used to identify new drug candidates are 2D cell-based systems, even though such in vitro assays do not adequately re-create the in vivo complexity of 3D tissues. Inadequate representation of the human tissue environment during a preclinical test can result in inaccurate predictions of compound effects on overall tissue functionality. Screening for compound efficacy by focusing on a single pathway or protein target, coupled with difficulties in maintaining long-term 2D monolayers, can serve to exacerbate these issues when using such simplistic model systems for physiological drug screening applications. Numerous studies have shown that cell responses to drugs in 3D culture are improved from those in 2D, with respect to modeling in vivo tissue functionality, which highlights the advantages of using 3D-based models for preclinical drug screens. In this review, we discuss the development of microengineered 3D tissue models that accurately mimic the physiological properties of native tissue samples and highlight the advantages of using such 3D microtissue models over conventional cell-based assays for future drug screening applications. We also discuss biomimetic 3D environments, based on engineered tissues as potential preclinical models for the development of more predictive drug screening assays for specific disease models.


Asunto(s)
Biomimética , Evaluación Preclínica de Medicamentos/métodos , Ingeniería de Tejidos , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Nanotecnología , Técnicas de Cultivo de Órganos
11.
Sci Rep ; 4: 6965, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25376886

RESUMEN

Cells sense and interpret mechanical cues, including cell-cell and cell-substrate interactions, in the microenvironment to collectively regulate various physiological functions. Understanding the influences of these mechanical factors on cell behavior is critical for fundamental cell biology and for the development of novel strategies in regenerative medicine. Here, we demonstrate plasma lithography patterning on elastomeric substrates for elucidating the influences of mechanical cues on neuronal differentiation and neuritogenesis. The neuroblastoma cells form neuronal spheres on plasma-treated regions, which geometrically confine the cells over two weeks. The elastic modulus of the elastomer is controlled simultaneously by the crosslinker concentration. The cell-substrate mechanical interactions are also investigated by controlling the size of neuronal spheres with different cell seeding densities. These physical cues are shown to modulate with the formation of focal adhesions, neurite outgrowth, and the morphology of neuroblastoma. By systematic adjustment of these cues, along with computational biomechanical analysis, we demonstrate the interrelated mechanoregulatory effects of substrate elasticity and cell size. Taken together, our results reveal that the neuronal differentiation and neuritogenesis of neuroblastoma cells are collectively regulated via the cell-substrate mechanical interactions.


Asunto(s)
Mecanotransducción Celular , Neuronas/metabolismo , Impresión/métodos , Esferoides Celulares/metabolismo , Adhesión Celular , Comunicación Celular , Diferenciación Celular , Línea Celular Tumoral , Microambiente Celular , Reactivos de Enlaces Cruzados/química , Módulo de Elasticidad , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Neurogénesis , Neuronas/ultraestructura , Gases em Plasma , Impresión/instrumentación , Esferoides Celulares/ultraestructura
12.
Biofabrication ; 6(2): 024112, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24717683

RESUMEN

Although synthetic polymers are desirable in tissue engineering applications for the reproducibility and tunability of their properties, synthetic small diameter vascular grafts lack the capability to endothelialize in vivo. Thus, synthetically fabricated biodegradable tissue scaffolds that reproduce important aspects of the extracellular environment are required to meet the urgent need for improved vascular grafting materials. In this study, we have successfully fabricated well-defined nanopatterned cell culture substrates made of a biodegradable composite hydrogel consisting of poly(ethylene glycol) dimethacrylate (PEGDMA) and gelatin methacrylate (GelMA) by using UV-assisted capillary force lithography. The elasticity and degradation rate of the composite PEG-GelMA nanostructures were tuned by varying the ratios of PEGDMA and GelMA. Human umbilical vein endothelial cells (HUVECs) cultured on nanopatterned PEG-GelMA substrates exhibited enhanced cell attachment compared with those cultured on unpatterned PEG-GelMA substrates. Additionally, HUVECs cultured on nanopatterned PEG-GelM substrates displayed well-aligned, elongated morphology similar to that of native vascular endothelial cells and demonstrated rapid and directionally persistent migration. The ability to alter both substrate stiffness and degradation rate and culture endothelial cells with increased elongation and alignment is a promising next step in recapitulating the properties of native human vascular tissue for tissue engineering applications.


Asunto(s)
Fenómenos Fisiológicos Celulares/efectos de los fármacos , Gelatina/química , Metacrilatos/química , Nanoestructuras/química , Polietilenglicoles/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Módulo de Elasticidad , Gelatina/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Metacrilatos/farmacología , Polietilenglicoles/farmacología
13.
Biomed Microdevices ; 12(5): 865-74, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20549367

RESUMEN

Islet size has recently been demonstrated to be an important factor in determining human islet transplantation outcomes. In this study, a multi-layered microfluidic device was developed and quantified for size-based separation of a heterogeneous population of mouse islets. The device was fabricated using standard soft lithography and polydimethylsiloxane (PDMS). Size-based separation was first demonstrated via injection of a heterogeneous population of glass beads between 50-300 microm in diameter which were separated into five sub-populations based on their diameter. Next, a heterogeneous population of mouse pancreatic islets, between 50-250 microm in diameter was separated into four sub-populations. Throughout this process the islets remained intact without any signs of damage, as indicated by cell viability staining. Islet glucose-stimulated insulin secretion of each sub-population of islets was also evaluated demonstrating that islets smaller than 150 microm have superior stimulation indexes (SI) compared to islets larger than 150 microm. In this study, we found that islets between 100 microm and 150 microm in diameter had the greatest SI value in a heterogeneous population of islets.


Asunto(s)
Islotes Pancreáticos , Técnicas Analíticas Microfluídicas , Animales , Supervivencia Celular , Vidrio/química , Glucosa/farmacología , Gravitación , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/fisiología , Ratones , Microesferas , Tamaño de los Órganos , Reproducibilidad de los Resultados
14.
PLoS One ; 4(9): e6891, 2009 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19727397

RESUMEN

Oxygen is a key modulator of many cellular pathways, but current devices permitting in vitro oxygen modulation fail to meet the needs of biomedical research. A microfabricated insert for multiwell plates has been developed to more effectively control the temporal and spatial oxygen concentration to better model physiological phenomena found in vivo. The platform consists of a polydimethylsiloxane insert that nests into a standard multiwell plate and serves as a passive microfluidic gas network with a gas-permeable membrane aimed to modulate oxygen delivery to adherent cells. Equilibration time is on the order of minutes and a wide variety of oxygen profiles can be attained based on the device design, such as the cyclic profile achieved in this study, and even oxygen gradients to mimic those found in vivo. The proper biological consequences of the device's oxygen delivery were confirmed in cellular models via a proliferation assay and western analysis of the upregulation of hypoxia inducible transcription factor-1alpha. These experiments serve as a demonstration for the platform as a viable tool to increase experimental throughput and permit novel experimental possibilities in any biomedical research lab.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Oxígeno/metabolismo , Técnicas Biosensibles , Adhesión Celular , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Proliferación Celular , Dimetilpolisiloxanos/química , Diseño de Equipo , Gases , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Microfluídica , Modelos Biológicos , Factores de Tiempo
15.
Biomed Microdevices ; 7(3): 189-95, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16133806

RESUMEN

Monitoring of live cells is important in the field of medical science, diagnostics, biology, and the pharmaceutical industry. In this study, live and dead CHO-K1 (Chinese Hamster Ovary) cells were fractionated by continuous-flow extraction in a microfluidic device using immiscible aqueous two-phase extraction technique. The polymer solutions offered stable two-phase flows in microchannel without diffusive mixing. The fundamentals of aqueous two-phase extraction can support stable and reproducible recovery and separation of biomolecules in microfluidic devices. Polyethylene glycol 8000 (PEG 8000, 4%) and dextran T 500 (5%) were selected as model polymer solutions. The appropriate flow rates of polymer and cell solutions were suggested. The fractionation efficiency of live and dead CHO K-1 cells from the culture broth was compared in normal macroscale system and microfluidic device. The optimum pH for the fractionation was 6.6 in both the normal and micro-scale systems. The loss of target live cells by sedimentation was circumvented in microfluidic device because of the negligible effect of gravity on the sedimentation. Most live cells were distributed to PEG-rich phase, while dead cells were found at the interface of two polymer solutions in microchannel. In this case, the recovery and fractionation efficiency of live cells in the PDMS-based microfluidic device was 100% and 97.0%, respectively.


Asunto(s)
Fraccionamiento Celular/instrumentación , Separación Celular/instrumentación , Análisis de Inyección de Flujo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Animales , Células CHO , Fraccionamiento Celular/métodos , Movimiento Celular/fisiología , Separación Celular/métodos , Cricetinae , Cricetulus , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Inyección de Flujo/métodos , Técnicas Analíticas Microfluídicas/métodos , Transición de Fase
16.
J Cardiovasc Pharmacol ; 42(2): 287-95, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12883334

RESUMEN

Hematein, a natural compound, is a known anti-inflammatory and antiatherogenic agent in the rabbit model. The authors investigated the effects of this compound on atherogenesis and possible mechanisms of the actions in the hyperlipidemic mice. Low-density lipoprotein receptor-deficient (Ldlr-/-) mice fed a high-cholesterol diet alone for 8 weeks developed the fatty streak lesion in the aortic sinus, whereas this lesion was significantly reduced by hematein treatment without a change in plasma lipid levels compared with control mice. Hematein treatment reduced plasma levels of lipid peroxide and superoxide generation in LPS-stimulated peritoneal macrophage. Hematein treatment inhibited NF-kappaB-DNA binding activity in peritoneal macrophages from Ldlr-/- mice and the activation of NF-kappaB in RAW264.7 macrophages. This compound suppressed plasma nitrite/nitrate levels in Ldlr-/- mice and NO production and iNOS expression in LPS+IFNgamma-stimulated peritoneal macrophages. Hematein treatment also suppressed the activity of iNOS promoters in RAW264.7 macrophages, and reduced the plasma levels of TNF-alpha and IL-1beta and the production of these cytokines in LPS+IFNgamma-stimulated peritoneal macrophages. These results suggest that hematein inhibits atherosclerotic lesion formation, possibly by reducing proinflammatory mediators through a decrease in reactive oxygen species generation and NF-kappaB activation.


Asunto(s)
Arteriosclerosis/prevención & control , Colesterol en la Dieta/sangre , Hematoxilina/análogos & derivados , Hematoxilina/uso terapéutico , Mediadores de Inflamación/uso terapéutico , FN-kappa B/antagonistas & inhibidores , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Animales , Femenino , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...