Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 140, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807229

RESUMEN

RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alternative splicing, mRNA degradation and localization by physically binding RNA molecules. Current methods to map these interactions, such as CLIP, rely on purifying single proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks on a global scale without purifying individual RBPs. ePRINT uses exoribonuclease XRN1 to precisely map the 5' end of the RBP binding site and uncovers direct and indirect targets of an RBP of interest. Importantly, ePRINT can also uncover RBPs that are differentially activated between cell fate transitions, including neural progenitor differentiation into neurons.


Asunto(s)
Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , Exorribonucleasas/metabolismo , Humanos , ARN/metabolismo , Animales , Unión Proteica
2.
Stem Cell Reports ; 17(7): 1650-1665, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35750046

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motor neurons (MNs). There are no effective treatments and patients usually die within 2-5 years of diagnosis. Emerging commonalities between familial and sporadic cases of this complex multifactorial disorder include disruption to RNA processing and cytoplasmic inclusion bodies containing TDP-43 and/or FUS protein aggregates. Both TDP-43 and FUS have been implicated in RNA processing functions, including microRNA biogenesis, transcription, and splicing. In this study, we explore the misexpression of microRNAs in an iPSC-based disease model of FUS ALS. We identify the downregulation of miR-139, an MN-enriched microRNA, in FUS and sporadic ALS MN. We discover that miR-139 downregulation leads to the activation of canonical WNT signaling and demonstrate that the WNT transcriptional mediator ß-catenin is a major driver of MN degeneration in ALS. Our results highlight the importance of homeostatic RNA networks in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , MicroARNs , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neuronas Motoras/metabolismo , Mutación , Enfermedades Neurodegenerativas/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Regulación hacia Arriba/genética , beta Catenina/genética , beta Catenina/metabolismo
3.
Stem Cell Reports ; 16(12): 3020-3035, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34767750

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by the loss of motor neurons. We utilized single-cell transcriptomics to uncover dysfunctional pathways in degenerating motor neurons differentiated from SOD1 E100G ALS patient-derived induced pluripotent stem cells (iPSCs) and respective isogenic controls. Differential gene expression and network analysis identified activation of developmental pathways and core transcriptional factors driving the ALS motor neuron gene dysregulation. Specifically, we identified activation of SMAD2, a downstream mediator of the transforming growth factor ß (TGF-ß) signaling pathway as a key driver of SOD1 iPSC-derived motor neuron degeneration. Importantly, our analysis indicates that activation of TGFß signaling may be a common mechanism shared between SOD1, FUS, C9ORF72, VCP, and sporadic ALS motor neurons. Our results demonstrate the utility of single-cell transcriptomics in mapping disease-relevant gene regulatory networks driving neurodegeneration in ALS motor neurons. We find that ALS-associated mutant SOD1 targets transcriptional networks that perturb motor neuron homeostasis.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/patología , Neuronas Motoras/patología , Degeneración Nerviosa/genética , Análisis de la Célula Individual , Superóxido Dismutasa-1/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Degeneración Nerviosa/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
4.
Mol Brain ; 14(1): 98, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174924

RESUMEN

Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases.


Asunto(s)
Relojes Biológicos/genética , Encéfalo/embriología , Senescencia Celular , Epigénesis Genética , Feto/citología , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Neuronas/citología , Senescencia Celular/genética , Metilación de ADN/genética , Bases de Datos Genéticas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Embarazo , Reproducibilidad de los Resultados
5.
Stem Cell Reports ; 8(4): 856-869, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28366453

RESUMEN

Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS), it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN)-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Células Madre Pluripotentes Inducidas/patología , Sistema de Señalización de MAP Quinasas , Neuronas Motoras/patología , Superóxido Dismutasa-1/genética , Factor de Transcripción AP-1/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Células Cultivadas , Ingeniería Genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Mutación Puntual , Proteínas Proto-Oncogénicas c-jun/metabolismo , Superóxido Dismutasa-1/metabolismo
6.
Stem Cells ; 34(1): 124-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26507573

RESUMEN

The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress proneuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs, miR-375, was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally, miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly, motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly, SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.


Asunto(s)
MicroARNs/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Degeneración Nerviosa/patología , Animales , Apoptosis/genética , Secuencia de Bases , Humanos , Ratones , MicroARNs/metabolismo , Datos de Secuencia Molecular , Atrofia Muscular Espinal/genética , Degeneración Nerviosa/genética , Neurogénesis/genética , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
EMBO J ; 33(11): 1271-83, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24802670

RESUMEN

Several transcription factors (TFs) have been implicated in neuroectoderm (NE) development, and recently, the TF PAX6 was shown to be critical for human NE specification. However, microRNA networks regulating human NE development have been poorly documented. We hypothesized that microRNAs activated by PAX6 should promote NE development. Using a genomics approach, we identified PAX6 binding sites and active enhancers genome-wide in an in vitro model of human NE development that was based on neural differentiation of human embryonic stem cells (hESC). PAX6 binding to active enhancers was found in the proximity of several microRNAs, including hsa-miR-135b. MiR-135b was activated during NE development, and ectopic expression of miR-135b in hESC promoted differentiation toward NE. MiR-135b promotes neural conversion by targeting components of the TGF-ß and BMP signaling pathways, thereby inhibiting differentiation into alternate developmental lineages. Our results demonstrate a novel TF-miRNA module that is activated during human neuroectoderm development and promotes the irreversible fate specification of human pluripotent cells toward the neural lineage.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Sitios de Unión , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas del Ojo/genética , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , MicroARNs/metabolismo , Modelos Moleculares , Mutación , Placa Neural , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética
8.
Biochem J ; 424(3): 467-78, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19761441

RESUMEN

The euryarchaeon Methanosarcina acetivorans has no homologues of the first three enzymes that produce the essential methanogenic coenzyme M (2-mercaptoethanesulfonate) in Methanocaldococcus jannaschii. A single M. acetivorans gene was heterologously expressed to produce a functional sulfopyruvate decarboxylase protein, the fourth canonical enzyme in this biosynthetic pathway. An adjacent gene, at locus MA3297, encodes one of the organism's two threonine synthase homologues. When both paralogues from this organism were expressed in an Escherichia coli threonine synthase mutant, the MA1610 gene complemented the thrC mutation, whereas the MA3297 gene did not. Both PLP (pyridoxal 5'-phosphate)-dependent proteins were heterologously expressed and purified, but only the MA1610 protein catalysed the canonical threonine synthase reaction. The MA3297 protein specifically catalysed a new beta-replacement reaction that converted L-phosphoserine and sulfite into L-cysteate and inorganic phosphate. This oxygen-independent mode of sulfonate biosynthesis exploits the facile nucleophilic addition of sulfite to an alpha,beta-unsaturated intermediate (PLP-bound dehydroalanine). An amino acid sequence comparison indicates that cysteate synthase evolved from an ancestral threonine synthase through gene duplication, and the remodelling of active site loop regions by amino acid insertion and substitutions. The cysteate product can be converted into sulfopyruvate by an aspartate aminotransferase enzyme, establishing a new convergent pathway for coenzyme M biosynthesis that appears to function in members of the orders Methanosarcinales and Methanomicrobiales. These differences in coenzyme M biosynthesis afford the opportunity to develop methanogen inhibitors that discriminate between the classes of methanogenic archaea.


Asunto(s)
Proteínas Arqueales/genética , Liasas de Carbono-Oxígeno/genética , Evolución Molecular , Mesna/metabolismo , Methanosarcinales/genética , Proteínas Arqueales/metabolismo , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Liasas de Carbono-Oxígeno/clasificación , Liasas de Carbono-Oxígeno/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Catálisis , Ácido Cisteico/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Prueba de Complementación Genética , Methanosarcina/enzimología , Methanosarcina/genética , Methanosarcina/metabolismo , Methanosarcinales/enzimología , Methanosarcinales/metabolismo , Mutación , Fosfoserina/metabolismo , Filogenia , Sulfitos/metabolismo
9.
Anal Biochem ; 381(1): 94-100, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18634748

RESUMEN

The Methanococcus maripaludis MMP0352 protein belongs to an oxidoreductase family that has been proposed to catalyze the NAD(+)-dependent oxidation of the 3'' position of uridine diphosphate N-acetyl-D-glucosamine (UDP-GlcNAc), forming a 3-hexulose sugar nucleotide. The heterologously expressed MMP0352 protein was purified and shown to efficiently catalyze UDP-GlcNAc oxidation, forming one NADH equivalent. This enzyme was used to develop a fixed endpoint fluorometric method to analyze UDP-GlcNAc. The enzyme is highly specific for this acetamido sugar nucleotide, and the procedure had a detection limit of 0.2 microM UDP-GlcNAc in a 1-ml sample. Using the method of standard addition, UDP-GlcNAc concentrations were measured in deproteinized extracts of Escherichia coli, Saccharomyces cerevisiae, and HeLa carcinoma cells. Equivalent concentrations were determined by both enzymatic and chromatographic analyses, validating this method. This procedure can be adapted for the high-throughput analysis of changes in cellular UDP-GlcNAc concentrations in time series experiments or inhibitor screens.


Asunto(s)
Técnicas de Química Analítica/métodos , Uridina Difosfato N-Acetilglucosamina/análisis , Extractos Celulares , Determinación de Punto Final , Escherichia coli , Células HeLa , Humanos , Cinética , Methanococcus/enzimología , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Saccharomyces cerevisiae , Especificidad por Sustrato
10.
J Bacteriol ; 190(8): 2987-96, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18263721

RESUMEN

Archaea and eukaryotes share a dolichol phosphate-dependent system for protein N-glycosylation. In both domains, the acetamido sugar N-acetylglucosamine (GlcNAc) forms part of the core oligosaccharide. However, the archaeal Methanococcales produce GlcNAc using the bacterial biosynthetic pathway. Key enzymes in this pathway belong to large families of proteins with diverse functions; therefore, the archaeal enzymes could not be identified solely using comparative sequence analysis. Genes encoding acetamido sugar-biosynthetic proteins were identified in Methanococcus maripaludis using phylogenetic and gene cluster analyses. Proteins expressed in Escherichia coli were purified and assayed for the predicted activities. The MMP1680 protein encodes a universally conserved glucosamine-6-phosphate synthase. The MMP1077 phosphomutase converted alpha-D-glucosamine-6-phosphate to alpha-D-glucosamine-1-phosphate, although this protein is more closely related to archaeal pentose and glucose phosphomutases than to bacterial glucosamine phosphomutases. The thermostable MJ1101 protein catalyzed both the acetylation of glucosamine-1-phosphate and the uridylyltransferase reaction with UTP to produce UDP-GlcNAc. The MMP0705 protein catalyzed the C-2 epimerization of UDP-GlcNAc, and the MMP0706 protein used NAD(+) to oxidize UDP-N-acetylmannosamine, forming UDP-N-acetylmannosaminuronate (ManNAcA). These two proteins are similar to enzymes used for proteobacterial lipopolysaccharide biosynthesis and gram-positive bacterial capsule production, suggesting a common evolutionary origin and a widespread distribution of ManNAcA. UDP-GlcNAc and UDP-ManNAcA biosynthesis evolved early in the euryarchaeal lineage, because most of their genomes contain orthologs of the five genes characterized here. These UDP-acetamido sugars are predicted to be precursors for flagellin and S-layer protein modifications and for the biosynthesis of methanogenic coenzyme B.


Asunto(s)
Acetilglucosamina/biosíntesis , Proteínas Arqueales/genética , Vías Biosintéticas , Enzimas/genética , Methanococcus/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Carbohidrato Epimerasas/metabolismo , Clonación Molecular , ADN de Archaea/química , ADN de Archaea/genética , Enzimas/aislamiento & purificación , Enzimas/metabolismo , Escherichia coli/genética , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glucosa-6-Fosfato/análogos & derivados , Glucosa-6-Fosfato/metabolismo , Glucofosfatos/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Methanococcus/genética , Datos de Secuencia Molecular , NAD/metabolismo , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Análisis de Secuencia de ADN , Uridina Difosfato N-Acetilglucosamina/metabolismo , Azúcares de Uridina Difosfato/metabolismo , Uridina Trifosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...