Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Int J Biol Macromol ; 265(Pt 2): 130958, 2024 Apr.
Article En | MEDLINE | ID: mdl-38503369

In this study, polyethylene glycol was grafted onto pullulan polysaccharides, resulting in the development of a novel adhesive termed PLUPE, offering superior drug loading capacity and rapid release efficiency. The efficacy of PLUPE was rigorously evaluated through various tests, including the tack test, shear strength test, 180° peel strength test, and human skin adhesion test. The results demonstrated that PLUPE exhibited a static shear strength that was 4.6 to 9.3 times higher than conventional PSAs, ensuring secure adhesion for over 3 days on human skin. A comprehensive analysis, encompassing electrical potential evaluation, calculation of interaction parameters, and FT-IR spectra, elucidated why improved the miscibility between the drug and PSAs, that the significant enhancement of intermolecular hydrogen bonding in the PLUPE structure. ATR-FTIR, rheological, and thermodynamic analyses further revealed that the hydrogen bonding network in PLUPE primarily interacted with polar groups in the skin. This interaction augmented the fluidity and free volume of PSA molecules, thereby promoting efficient drug release. The results confirmed the safety profile of PLUPE through skin irritation tests and MTT assays, bolstering its viability for application in TDDS patches. In conclusion, PLUPE represented a groundbreaking adhesive solution for TDDS patches, successfully overcoming longstanding challenges associated with PSAs.


Adhesives , Glucans , Polyethylene Glycols , Humans , Adhesives/chemistry , Polyethylene Glycols/metabolism , Spectroscopy, Fourier Transform Infrared , Skin/metabolism , Drug Liberation , Polysaccharides/pharmacology , Polysaccharides/metabolism , Administration, Cutaneous , Transdermal Patch
2.
ACS Appl Mater Interfaces ; 16(8): 9799-9815, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38380628

This study introduces a dendronized pressure-sensitive adhesive, TMPE@Rha, addressing Food and Drug Administration (FDA) concerns about traditional pressure-sensitive adhesives (PSAs) in transdermal drug delivery systems. The unique formulation, composed of rhamnose, trihydroxypropane, and poly(ethylene glycol), significantly enhances cohesion and tissue adhesion. Leveraging rhamnose improves intermolecular interactions and surface chain mobility, boosting tissue adhesion. Compared to acrylic pressure-sensitive adhesive 87-DT-4098, TMPE@Rha shows substantial advantages, with up to 5 to 6 times higher peel strength on porcine and wood substrates. Importantly, it maintains strong human skin adhesion beyond 7 days without the typical "dark ring" phenomenon. When loaded with diclofenac, the adhesive exhibits 3.12 times greater peeling strength than commercial alternatives, sustaining human adhesion for up to 6 days. Rigorous analyses confirm rhamnose's role in increasing interaction strength. In vitro studies and microscopy demonstrate the polymer's ability to enhance drug loading and distribution on the skin, improving permeability. Biocompatibility tests affirm TMPE@Rha as nonirritating. In summary, TMPE@Rha establishes a new standard for PSAs in transdermal drug delivery systems, offering exceptional adhesion, robustness, and biocompatibility. This pioneering work provides a blueprint for next-generation, highly adhesive, drug-loaded PSAs that meet and exceed FDA criteria.


Dendrimers , Humans , Animals , Swine , Rhamnose , Tissue Adhesions , Administration, Cutaneous , Skin , Pharmaceutical Preparations , Adhesives/chemistry , Drug Delivery Systems
3.
Drug Deliv Transl Res ; 14(3): 802-811, 2024 Mar.
Article En | MEDLINE | ID: mdl-38082031

The aim of this study was to design a tulobuterol (TUL) patch with good penetration behavior and mechanical properties. Particular attention was paid to the effect of transdermal permeation enhancers on the release process of metal ligand-based acrylic pressure-sensitive adhesive (AA-NAT/Fe3+). The type and dosage of the enhancers were screened by in vitro transdermal penetration in rat skin. The optimized formulation was evaluated in a pharmacokinetic study in rats. Furthermore, the molecular mechanism by which Azone (AZ) improves the release rate of TUL from AA-NAT/Fe3+ was investigated by FT-IR, shear strength test, rheological study, and molecular simulation. As a result, the optimized formula using AA-NAT/Fe3+ showed better mechanical properties compared to commercial products. Meanwhile, the AUC0-t and Cmax of the optimized patch were 1045 ± 89 ng/mL·h and 106.8 ± 28.5 ng/mL, respectively, which were not significantly different from those of the commercial product. In addition, AZ increased the mobility of the pressure-sensitive adhesive (PSA) rather than decreasing the drug-PSA interaction, which was the main factor in enhancing TUL release from the patch. In conclusion, a TUL transdermal drug delivery patch was successfully developed using metal-coordinated PSA, and a reference was provided for the design of metal-coordinated acrylic PSA for transdermal patch delivery applications.


Adhesives , Skin Absorption , Terbutaline/analogs & derivatives , Rats , Animals , Spectroscopy, Fourier Transform Infrared , Ligands , Administration, Cutaneous , Skin/metabolism , Transdermal Patch
4.
Int J Pharm ; 649: 123575, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37926177

Hydrogen bonding, ionic interactions, and dipole-dipole interactions have been extensively studied to control drug release from patches. However, metal coordination bonding has not been fully explored for the control of transdermal drug release. In this study, metal coordination-based acrylic pressure-sensitive adhesives (PSAs) were designed and synthesized in order to systemically elucidate the effect of metal coordination on drug release from acrylic PSAs. Ketoprofen (KET) and donepezil (DNP) were selected as model drugs. Results showed that the burst release rate of KET was controlled by N-[tris(hydroxymethyl)methyl]acrylamide (NAT) and Fe3+, while the DNP release rate had no significant changes. It was found that the PSA-drug interaction, rather than the molecular mobility of PSA, played a dominant role in the controlled release process of KET. The hydrogen bond interaction between NAT and KET controlled the release process, while the coordination bond interaction between Fe3+ and KET further slowed down the release of KET. In conclusion, it was found that the controlled release of KET was achieved by the synergistic effect of coordination bonding and hydrogen bonding, which opens up a facile but powerful avenue for the design of brand-new controlled release systems and new opportunities for their application in transdermal drug delivery.


Adhesives , Ketoprofen , Rats , Male , Humans , Animals , Adhesives/chemistry , Skin Absorption , Delayed-Action Preparations/chemistry , Hydrogen Bonding , Drug Liberation , Prostate-Specific Antigen , Rats, Wistar , Administration, Cutaneous
5.
Acta Biomater ; 152: 186-196, 2022 10 15.
Article En | MEDLINE | ID: mdl-36064108

Pressure-sensitive adhesives are critical to the product's safety, efficacy, and quality in transdermal drug delivery systems. However, many defects of transdermal patches (e.g., insufficient adhesion, patch displacement, and "dark ring" phenomenon) remain. Herein, the N-[tris(hydroxymethyl)methyl]acrylamide (NAT)-modified acrylic pressure-sensitive adhesive coordinated with Fe(III) (AA-NAT/Fe3+) was creatively proposed. Results demonstrated that the adhesiveness and cohesiveness of the optimized AA-NAT/Fe3+ were higher by 1.8- and 9.7-fold, respectively, than those of commercially available DURO-TAK® 87-4098 due to the hydrogen bonding interaction of NAT-skin interface and coordination of NAT-Fe3+. Moreover, compared with that of DURO-TAK® 87-4098, the adhesion time of AA-NAT/Fe3+ on the human forearm was remarkably prolonged, and no "dark ring" phenomenon was observed for AA-NAT/Fe3+ after removal. After clonidine (CLO) was loaded into AA-NAT/Fe3+, controlled drug release and a drug transdermal behavior were endowed for CLO@AA-NAT/Fe3+in vitro and in vivo. AA-NAT/Fe3+ still maintained superiority in adhesion and cohesion properties after CLO loading. These observations would contribute to the development of pressure-sensitive adhesives with outstanding adhesion and cohesion for transdermal patches. STATEMENT OF SIGNIFICANCE: This N-[tris(hydroxymethyl)methyl]acrylamide-modified acrylic pressure-sensitive adhesive coordinated with Fe(III) has enhanced adhesion and cohesion properties, which provide a simple but effective strategy to solve the problems (e.g., insufficient adhesion, patch displacement, and "dark ring" phenomenon) in existing transdermal patches.


Adhesives , Ferric Compounds , Acrylamide , Adhesives/pharmacology , Clonidine , Humans
6.
Eur J Pharm Sci ; 124: 105-113, 2018 Nov 01.
Article En | MEDLINE | ID: mdl-30153525

It has been reported that natural transdermal permeation enhancers (TPEs) are superior in safety compared with synthetic TPEs. The essential oil (EO) of Ledum palustre L. var. angustum N. Busch had a strong enhancement effect on drug skin permeation based on previous studies. However, their enhancement mechanisms and safety were still unclear. The composition of the EO was determined using GC-MS. By using donepezil (DNP) as a model drug, the enhancement effect of the constituents of the EO and the EO were evaluated by in vitro skin permeation test. Confocal laser scanning microscopy (CLSM), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and molecular docking were used to investigate the interaction among drug, enhancers and skin. Skin retention amount, apparent partition coefficient (K') and molecular simulation were used to reflect the effect of the enhancers on drug partition into skin. The skin irritation potential was evaluated using in vivo skin erythema analysis. The results showed that the main constituents of the EO were sabinene (SA), 4-terpineol (TE), p-cymene (CY) and cuminaldehyde (CU). CU was the main active constituent of the EO, which facilitated skin permeation of DNP. CU improved the skin permeation of DNP by increasing the mobility of the stratum corneum (SC) intercellular lipids, decreasing the interaction between DNP and the SC intercellular lipids, and improving the partition of DNP into the SC layer. Besides the superior enhancement effect, CU also showed a lower skin irritation potential compared with the EO. This work gave us some enlightenment that the effectiveness and safety of the natural transdermal permeation enhancers could be improved by understanding their composition and the enhancement mechanisms.


Benzaldehydes/administration & dosage , Donepezil/administration & dosage , Terpenes/administration & dosage , Administration, Cutaneous , Animals , Benzaldehydes/analysis , Cymenes , Donepezil/analysis , Donepezil/pharmacokinetics , Drug Interactions , Ledum , Male , Molecular Docking Simulation , Oils, Volatile/chemistry , Rats, Wistar , Skin/metabolism , Skin Absorption/drug effects , Skin Irritancy Tests , Terpenes/analysis
...