Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
PLoS One ; 19(4): e0301989, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683764

RESUMEN

Somatic Y chromosome loss in hematopoietic cells is associated with higher mortality in men. However, the status of the Y chromosome in cancer tissue is not fully known due to technical limitations, such as difficulties in labelling and sequencing DNA from the Y chromosome. We have developed a system to quantify Y chromosome gain or loss in patient-derived prostate cancer organoids. Using our system, we observed Y chromosome loss in 4 of the 13 (31%) patient-derived metastatic castration-resistant prostate cancer (mCRPC) organoids; interestingly, loss of Yq (long arm of the Y chromosome) was seen in 38% of patient-derived organoids. Additionally, potential associations were observed between mCRPC and Y chromosome nullisomy. The prevalence of Y chromosome loss was similar in primary and metastatic tissue, suggesting that Y chromosome loss is an early event in prostate cancer evolution and may not a result of drug resistance or organoid derivation. This study reports quantification of Y chromosome loss and gain in primary and metastatic prostate cancer tissue and lays the groundwork for further studies investigating the clinical relevance of Y chromosome loss or gain in mCRPC.


Asunto(s)
Pintura Cromosómica , Cromosomas Humanos Y , Metástasis de la Neoplasia , Masculino , Humanos , Cromosomas Humanos Y/genética , Metástasis de la Neoplasia/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Organoides/patología , Deleción Cromosómica
2.
Protein Cell ; 14(8): 591-602, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37029701

RESUMEN

While Mek1/2 and Gsk3ß inhibition ("2i") supports the maintenance of murine embryonic stem cells (ESCs) in a homogenous naïve state, prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impairs developmental potential. Additionally, 2i fails to support derivation and culture of fully potent female ESCs. Here we find that mouse ESCs cultured in 2i/LIF supplemented with lipid-rich albumin (AlbuMAX) undergo pluripotency transition yet maintain genomic stability and full potency over long-term culture. Mechanistically, lipids in AlbuMAX impact intracellular metabolism including nucleotide biosynthesis, lipid biogenesis, and TCA cycle intermediates, with enhanced expression of DNMT3s that prevent DNA hypomethylation. Lipids induce a formative-like pluripotent state through direct stimulation of Erk2 phosphorylation, which also alleviates X chromosome loss in female ESCs. Importantly, both male and female "all-ESC" mice can be generated from de novo derived ESCs using AlbuMAX-based media. Our findings underscore the importance of lipids to pluripotency and link nutrient cues to genome integrity in early development.


Asunto(s)
Células Madre Embrionarias , Células Madre Embrionarias de Ratones , Masculino , Animales , Femenino , Ratones , Inestabilidad Genómica , Lípidos , ADN/metabolismo , Diferenciación Celular
3.
Methods Mol Biol ; 2583: 25-45, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36418723

RESUMEN

Karyotyping remains an invaluable tool to researchers exploring the cause and consequence of genomic instability in biologic systems. It allows investigators to survey the entire chromosome complement in individual cells and in a single experiment, visualize, and measure different forms or features of instability such as aneuploidy, ongoing chromosomal instability, DNA damage/mis-repair, telomere erosion, chromosome mis-segregation, or defects in cell cycle progression. This chapter describes the combined use of conventional (DAPI-banding) and spectral karyotyping (SKY) to characterize genomic instability in murine cerebellar granule neuron progenitors (CGNPs), using CGNPs with conditional deletion of Atr as a positive control for chromosomal rearrangements. Protocols for preparing slides (metaphase spreads) from fixed cell suspension, DAPI-banding, and spectral karyotyping (SKY) are included. Pertinent aspects of image acquisition and analysis are detailed. These protocols can likely be adapted to other tissue types (murine or human).


Asunto(s)
Aberraciones Cromosómicas , Inestabilidad Genómica , Humanos , Ratones , Animales , Cariotipificación Espectral , Cariotipificación , Neuronas
4.
Cancer Discov ; 13(1): 41-55, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36355783

RESUMEN

With the combination of KRASG12C and EGFR inhibitors, KRAS is becoming a druggable target in colorectal cancer. However, secondary resistance limits its efficacy. Using cell lines, patient-derived xenografts, and patient samples, we detected a heterogeneous pattern of putative resistance alterations expected primarily to prevent inhibition of ERK signaling by drugs at progression. Serial analysis of patient blood samples on treatment demonstrates that most of these alterations are detected at a low frequency except for KRASG12C amplification, a recurrent resistance mechanism that rises in step with clinical progression. Upon drug withdrawal, resistant cells with KRASG12C amplification undergo oncogene-induced senescence, and progressing patients experience a rapid fall in levels of this alteration in circulating DNA. In this new state, drug resumption is ineffective as mTOR signaling is elevated. However, our work exposes a potential therapeutic vulnerability, whereby therapies that target the senescence response may overcome acquired resistance. SIGNIFICANCE: Clinical resistance to KRASG12C-EGFR inhibition primarily prevents suppression of ERK signaling. Most resistance mechanisms are subclonal, whereas KRASG12C amplification rises over time to drive a higher portion of resistance. This recurrent resistance mechanism leads to oncogene-induced senescence upon drug withdrawal and creates a potential vulnerability to senolytic approaches. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Animales , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad , Receptores ErbB , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación
5.
Mol Cell ; 82(20): 3781-3793.e7, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36099913

RESUMEN

Germline mutations in the BRCA genes are associated with a higher risk of carcinogenesis, which is linked to an increased mutation rate and loss of the second unaffected BRCA allele (loss of heterozygosity, LOH). However, the mechanisms triggering mutagenesis are not clearly understood. The BRCA genes contain high numbers of repetitive DNA sequences. We detected replication forks stalling, DNA breaks, and deletions at these sites in haploinsufficient BRCA cells, thus identifying the BRCA genes as fragile sites. Next, we found that stalled forks are repaired by error-prone pathways, such as microhomology-mediated break-induced replication (MMBIR) in haploinsufficient BRCA1 breast epithelial cells. We detected MMBIR mutations in BRCA1 tumor cells and noticed deletions-insertions (>50 bp) at the BRCA1 genes in BRCA1 patients. Altogether, these results suggest that under stress, error-prone repair of stalled forks is upregulated and induces mutations, including complex genomic rearrangements at the BRCA genes (LOH), in haploinsufficient BRCA1 cells.


Asunto(s)
Proteína BRCA1 , Replicación del ADN , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparación del ADN , Mutagénesis , Genes BRCA1 , Pérdida de Heterocigocidad , Proteína BRCA2/genética , Proteína BRCA2/metabolismo
6.
Nature ; 608(7924): 795-802, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35978189

RESUMEN

Although p53 inactivation promotes genomic instability1 and presents a route to malignancy for more than half of all human cancers2,3, the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases-Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications-each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53-the 'guardian of the genome'-is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.


Asunto(s)
Carcinogénesis , Progresión de la Enfermedad , Genes p53 , Genoma , Pérdida de Heterocigocidad , Neoplasias Pancreáticas , Proteína p53 Supresora de Tumor , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Evolución Molecular , Eliminación de Gen , Genes p53/genética , Genoma/genética , Ratones , Modelos Genéticos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteína p53 Supresora de Tumor/genética
7.
Mod Pathol ; 35(2): 193-201, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34599282

RESUMEN

Classic adenoid cystic carcinomas (C-AdCCs) of the breast are rare, relatively indolent forms of triple negative cancers, characterized by recurrent MYB or MYBL1 genetic alterations. Solid and basaloid adenoid cystic carcinoma (SB-AdCC) is considered a rare variant of AdCC yet to be fully characterized. Here, we sought to determine the clinical behavior and repertoire of genetic alterations of SB-AdCCs. Clinicopathologic data were collected on a cohort of 104 breast AdCCs (75 C-AdCCs and 29 SB-AdCCs). MYB expression was assessed by immunohistochemistry and MYB-NFIB and MYBL1 gene rearrangements were investigated by fluorescent in-situ hybridization. AdCCs lacking MYB/MYBL1 rearrangements were subjected to RNA-sequencing. Targeted sequencing data were available for 9 cases. The invasive disease-free survival (IDFS) and overall survival (OS) were assessed in C-AdCC and SB-AdCC. SB-AdCCs have higher histologic grade, and more frequent nodal and distant metastases than C-AdCCs. MYB/MYBL1 rearrangements were significantly less frequent in SB-AdCC than C-AdCC (3/14, 21% vs 17/20, 85% P < 0.05), despite the frequent MYB expression (9/14, 64%). In SB-AdCCs lacking MYB rearrangements, CREBBP, KMT2C, and NOTCH1 alterations were observed in 2 of 4 cases. SB-AdCCs displayed a shorter IDFS than C-AdCCs (46.5 vs 151.8 months, respectively, P < 0.001), independent of stage. In summary, SB-AdCCs are a molecularly heterogeneous but clinically aggressive group of tumors. Less than 25% of SB-AdCCs display the genomic features of C-AdCC. Defining whether these tumors represent a single entity or a collection of different cancer types with a similar basaloid histologic appearance is warranted.


Asunto(s)
Carcinoma Adenoide Quístico , Carcinoma Adenoide Quístico/genética , Carcinoma Adenoide Quístico/patología , Genómica , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Proteínas de Fusión Oncogénica/genética
8.
Endocr Pathol ; 33(2): 304-314, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34549366

RESUMEN

Molecular characterization of adrenocortical carcinomas (ACC) by The Cancer Genome Atlas (TCGA) has highlighted a high prevalence of TERT alterations, which are associated with disease progression. Herein, 78 ACC were profiled using a combination of next generation sequencing (n = 76) and FISH (n = 9) to assess for TERT alterations. This data was combined with TCGA dataset (n = 91). A subset of borderline adrenocortical tumors (n = 5) and adrenocortical adenomas (n = 7) were also evaluated. The most common alteration involving the TERT gene involved gains/amplifications, seen in 22.2% (37/167) of cases. In contrast, "hotspot" promoter mutations (C > T promoter mutation at position -124, 7/167 cases, 4.2%) and promoter rearrangements (2/165, 1.2%) were rare. Recurrent co-alterations included 22q copy number losses seen in 24% (9/38) of cases. Although no significant differences were identified in cases with and without TERT alterations pertaining to age at presentation, tumor size, weight, laterality, mitotic index and Ki67 labeling, cases with TERT alterations showed worse outcomes. Metastatic behavior was seen in 70% (28/40) of cases with TERT alterations compared to 51.2% (65/127, p = 0.04) of cases that lacked these alterations. Two (of 5) borderline tumors showed amplifications and no TERT alterations were identified in 7 adenomas. In the borderline group, 0 (of 4) patients with available follow up had adverse outcomes. We found that TERT alterations in ACC predominantly involve gene amplifications, with a smaller subset harboring "hotspot" promoter mutations and rearrangements, and 70% of TERT-altered tumors are associated with metastases. Prospective studies are needed to validate the prognostic impact of these findings.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Telomerasa , Neoplasias de la Corteza Suprarrenal/genética , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , Variaciones en el Número de Copia de ADN , Humanos , Mutación , Telomerasa/genética
9.
Mol Cancer Ther ; 21(2): 382-394, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34789562

RESUMEN

Hurthle cell carcinomas (HCCs) are refractory to radioactive iodine and unresponsive to chemotherapeutic agents, with a fatality rate that is the highest among all types of thyroid cancer after anaplastic thyroid cancer. Our previous study on the genomic landscape of HCCs identified a high incidence of disruptions of mTOR pathway effectors. Here, we report a detailed analysis of mTOR signaling in cell line and patient-derived xenograft mouse models of HCCs. We show that mTOR signaling is upregulated and that targeting mTOR signaling using mTOR inhibitors suppresses tumor growth in primary tumors and distant metastasis. Mechanistically, ablation of mTOR signaling impaired the expression of p-S6 and cyclin A2, resulting in the decrease of the S phase and blocking of cancer cell proliferation. Strikingly, mTOR inhibitor treatment significantly reduced lung metastatic lesions, with the decreased expression of Snail in xenograft tumors. Our data demonstrate that mTOR pathway blockade represents a novel treatment strategy for HCC.


Asunto(s)
Adenoma Oxifílico/genética , Neoplasias/genética , Serina-Treonina Quinasas TOR/genética , Neoplasias de la Tiroides/genética , Adenoma Oxifílico/patología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones SCID , Neoplasias/patología , Neoplasias de la Tiroides/patología
10.
Oncogene ; 41(5): 671-682, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34802033

RESUMEN

Chromosome 8q gain is associated with poor clinical outcomes in prostate cancer, but the underlying biological mechanisms remain to be clarified. CSN5, a putative androgen receptor (AR) partner that is located on chromosome 8q, is the key subunit of the COP9 signalosome, which deactivates ubiquitin ligases. Deregulation of CSN5 could affect diverse cellular functions that contribute to tumor development, but there has been no comprehensive study of its function in prostate cancer. The clinical significance of CSN5 amplification/overexpression was evaluated in 16 prostate cancer clinical cohorts. Its oncogenic activity was assessed by genetic and pharmacologic perturbations of CSN5 activity in prostate cancer cell lines. The molecular mechanisms of CSN5 function were assessed, as was the efficacy of the CSN5 inhibitor CSN5i-3 in vitro and in vivo. Finally, the transcription cofactor activity of CSN5 in prostate cancer cells was determined. The prognostic significance of CSN5 amplification and overexpression in prostate cancer was independent of MYC amplification. Inhibition of CSN5 inhibited its oncogenic function by targeting AR signaling, DNA repair, multiple oncogenic pathways, and spliceosome regulation. Furthermore, inhibition of CSN5 repressed metabolic pathways, including oxidative phosphorylation and glycolysis in AR-negative prostate cancer cells. Targeting CSN5 with CSN5i-3 showed potent antitumor activity in vitro and in vivo. Importantly, CSN5i-3 synergizes with PARP inhibitors to inhibit prostate cancer cell growth. CSN5 functions as a transcription cofactor to cooperate with multiple transcription factors in prostate cancer. Inhibiting CSN5 strongly attenuates prostate cancer progression and could enhance PARP inhibition efficacy in the treatment of prostate cancer.


Asunto(s)
Complejo del Señalosoma COP9
11.
J Natl Cancer Inst ; 113(11): 1561-1569, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33825902

RESUMEN

BACKGROUND: EGFR amplification occurs in about 1% of metastatic colorectal cancers (mCRCs) but is not routinely tested as a prognostic or predictive biomarker for patients treated with anti-EGFR monoclonal antibodies. Herein, we aimed to characterize the clinical and molecular landscape of EGFR-amplified mCRC. METHODS: In this multinational cohort study, we compared clinical data of 62 patients with EGFR-amplified vs 1459 EGFR nonamplified mCRC, as well as comprehensive genomic data of 35 EGFR-amplified vs 439 EGFR nonamplified RAS/BRAF wild-type and microsatellite stable (MSS) tumor samples. All statistical tests were 2-sided. RESULTS: EGFR amplification was statistically significantly associated with left primary tumor sidedness and RAS/BRAF wild-type status. All EGFR-amplified tumors were MSS and HER2 nonamplified. Overall, EGFR-amplified samples had higher median fraction of genome altered compared with EGFR-nonamplified, RAS/BRAF wild-type MSS cohort. Patients with EGFR-amplified tumors reported longer overall survival (OS) (median OS = 71.3 months, 95% confidence interval [CI] = 50.7 to not available [NA]) vs EGFR-nonamplified ones (24.0 months; 95% CI = 22.8 to 25.6; hazard ratio [HR] = 0.30, 95% CI = 0.20 to 0.44; P < .001; adjusted HR = 0.46, 95% CI = 0.30 to 0.69; P < .001). In the subgroup of patients with RAS/BRAF wild-type mCRC exposed to anti-EGFR-based therapy, EGFR amplification was again associated with better OS (median OS = 54.0 months, 95% CI = 35.2 to NA, vs 29.1 months, 95% CI = 27.0 to 31.9, respectively; HR = 0.46, 95% CI = 0.28 to 0.76; P = .002). CONCLUSION: Patients with EGFR-amplified mCRC represent a biologically defined subgroup and merit dedicated clinical trials with novel and more potent EGFR-targeting strategies beyond single-agent monoclonal antibodies.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Estudios de Cohortes , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Receptores ErbB/genética , Humanos , Proteínas Proto-Oncogénicas B-raf/genética
12.
Hum Pathol ; 104: 105-116, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32818509

RESUMEN

SMARCB1-deficient sinonasal carcinoma (SNC) is an aggressive malignancy characterized by INI1 loss mostly owing to homozygous SMARCB1 deletion. With the exception of a few reported cases, these tumors have not been thoroughly studied by massive parallel sequencing (MPS). A retrospective cohort of 22 SMARCB1-deficient SNCs were studied by light microscopy, immunohistochemistry, fluorescence in situ hybridization (n = 9), targeted exome MPS (n = 12), and Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) (n = 10), a bioinformatics pipeline for copy number/zygosity assessment. SMARCB1-deficient SNC was found in 13 (59%) men and 9 (41%) women. Most common growth patterns were the basaloid pattern (59%), occurring mostly in men (77%), and plasmacytoid/eosinophilic/rhabdoid pattern (23%), arising mostly in women (80%). The former group was significantly younger (median age = 46 years, range = 24-54, vs 79 years, range = 66-95, p < 0.0001). Clear cell, pseudoglandular, glandular, spindle cell, and sarcomatoid features were variably present. SMARCB1-deficient SNC expressed cytokeratin (100%), p63 (72%), neuroendocrine markers (52%), CDX-2 (44%), S-100 (25%), CEA (4/4 cases), Hepatocyte (2/2 cases), and aberrant nuclear ß-catenin (1/1 case). SMARCB1 showed homozygous deletion (68%), hemizygous deletion (16%), or truncating mutations associated with copy neutral loss of heterozygosity (11%). Coexisting genetic alterations were 22q loss including loss of NF2 and CHEK2 (50%), chromosome 7 gain (25%), and TP53 V157F, CDKN2A W110∗, and CTNNB1 S45F mutations. At 2 years and 5 years, the disease-specific survival and disease-free survival were 70% and 35% and 13% and 0%, respectively. SMARCB1-deficient SNCs are phenotypically and genetically diverse, and these distinctions warrant further investigation for their biological and clinical significance.


Asunto(s)
Biomarcadores de Tumor/genética , Heterogeneidad Genética , Neoplasias Nasales/genética , Neoplasias de los Senos Paranasales/genética , Proteína SMARCB1/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/deficiencia , Supervivencia sin Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Mutación , Estadificación de Neoplasias , Neoplasias Nasales/química , Neoplasias Nasales/patología , Neoplasias Nasales/terapia , Neoplasias de los Senos Paranasales/química , Neoplasias de los Senos Paranasales/patología , Neoplasias de los Senos Paranasales/terapia , Fenotipo , Estudios Retrospectivos , Proteína SMARCB1/deficiencia , Factores de Tiempo , Adulto Joven
14.
NPJ Breast Cancer ; 6: 20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550265

RESUMEN

Primary pleomorphic adenomas (PAs) and mucoepidermoid carcinomas (MECs) of the breast are vanishingly rare. Here we sought to determine whether breast PAs and MECs would be underpinned by the fusion genes reported to occur in their salivary gland counterparts. Our study included three breast PAs and one breast MEC, which were subjected to RNA sequencing (PAs, n = 2; MEC, n = 1) or to Archer FusionPlex sequencing (PA, n = 1). Our analyses revealed the presence of the HMGA2-WIF1 fusion gene in breast PA3, the CTNNB1-PLAG1 fusion gene in breast PA2, and the CRTC1-MAML2 fusion gene in the breast MEC analyzed (1/1). No oncogenic fusion genes were detected in breast PA1, and no additional oncogenic fusion genes were detected in the cases studied. The presence of the fusion genes identified was validated by fluorescence in situ hybridization (n = 1), reverse transcription-PCR (n = 1), or by both methods (n = 1). Taken together, our findings indicate that PAs and MECs arising in the breast resemble their salivary gland counterparts not only phenotypically but also at the genetic level. Furthermore, our data suggest that the molecular analysis of breast PAs and MECs might constitute a useful tool to aid in their differential diagnosis.

15.
Elife ; 92020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32401198

RESUMEN

Copy number alterations (CNAs) play an important role in molding the genomes of breast cancers and have been shown to be clinically useful for prognostic and therapeutic purposes. However, our knowledge of intra-tumoral genetic heterogeneity of this important class of somatic alterations is limited. Here, using single-cell sequencing, we comprehensively map out the facets of copy number alteration heterogeneity in a cohort of breast cancer tumors. Ou/var/www/html/elife/12-05-2020/backup/r analyses reveal: genetic heterogeneity of non-tumor cells (i.e. stroma) within the tumor mass; the extent to which copy number heterogeneity impacts breast cancer genomes and the importance of both the genomic location and dosage of sub-clonal events; the pervasive nature of genetic heterogeneity of chromosomal amplifications; and the association of copy number heterogeneity with clinical and biological parameters such as polyploidy and estrogen receptor negative status. Our data highlight the power of single-cell genomics in dissecting, in its many forms, intra-tumoral genetic heterogeneity of CNAs, the magnitude with which CNA heterogeneity affects the genomes of breast cancers, and the potential importance of CNA heterogeneity in phenomena such as therapeutic resistance and disease relapse.


Cells in the body remain healthy by tightly preventing and repairing random changes, or mutations, in their genetic material. In cancer cells, however, these mechanisms can break down. When these cells grow and multiply, they can then go on to accumulate many mutations. As a result, cancer cells in the same tumor can each contain a unique combination of genetic changes. This genetic heterogeneity has the potential to affect how cancer responds to treatment, and is increasingly becoming appreciated clinically. For example, if a drug only works against cancer cells carrying a specific mutation, any cells lacking this genetic change will keep growing and cause a relapse. However, it is still difficult to quantify and understand genetic heterogeneity in cancer. Copy number alterations (or CNAs) are a class of mutation where large and small sections of genetic material are gained or lost. This can result in cells that have an abnormal number of copies of the genes in these sections. Here, Baslan et al. set out to explore how CNAs might vary between individual cancer cells within the same tumor. To do so, thousands of individual cancer cells were isolated from human breast tumors, and a technique called single-cell genome sequencing used to screen the genetic information of each of them. These experiments confirmed that CNAs did differ ­ sometimes dramatically ­ between patients and among cells taken from the same tumor. For example, many of the cells carried extra copies of well-known cancer genes important for treatment, but the exact number of copies varied between cells. This heterogeneity existed for individual genes as well as larger stretches of DNA: this was the case, for instance, for an entire section of chromosome 8, a region often affected in breast and other tumors. The work by Baslan et al. captures the sheer extent of genetic heterogeneity in cancer and in doing so, highlights the power of single-cell genome sequencing. In the future, a finer understanding of the genetic changes present at the level of an individual cancer cell may help clinicians to manage the disease more effectively.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Variaciones en el Número de Copia de ADN , Dosificación de Gen , Heterogeneidad Genética , Genómica , Análisis de la Célula Individual , Secuenciación Completa del Genoma , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Ensayos Clínicos Fase II como Asunto , Femenino , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Pronóstico , RNA-Seq
16.
Prostate Cancer Prostatic Dis ; 23(3): 507-516, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32094488

RESUMEN

BACKGROUND: Molecular and immunohistochemistry-based profiling of prostatic adenocarcinoma has revealed frequent Androgen Receptor (AR) gene and protein alterations in metastatic disease. This includes an AR-null non-neuroendocrine phenotype of metastatic castrate resistant prostate cancer which may be less sensitive to androgen receptor signaling inhibitors. This AR-null non-neuroendocrine phenotype is thought to be associated with TP53 and RB1 alterations. Herein, we have correlated molecular profiling of metastatic castrate resistant prostate cancer with AR/P53/RB immunohistochemistry and relevant clinical correlates. DESIGN: Twenty-seven cases of metastatic castrate resistant prostate cancer were evaluated using histopathologic examination to rule out neuroendocrine differentiation. A combination of a hybridization exon-capture next-generation sequencing-based assay (n = 26), fluorescence in situ hybridization for AR copy number status (n = 16), and immunohistochemistry for AR (n = 27), P53 (n = 24) and RB (n = 25) was used to profile these cases. RESULTS: Of 27 metastatic castrate resistant prostate cancer cases, 17 had AR amplification and showed positive nuclear expression of AR by immunohistochemistry. Nine cases lacked AR copy number alterations using next-generation sequencing/fluorescence in situ hybridization. A subset of these metastatic castrate resistant prostate cancer cases demonstrated the AR-null phenotype by immunohistochemistry (five cases and one additional case where next-generation sequencing failed). Common co-alterations in these cases involved the TP53, RB1, and PTEN genes and all these patients received prior therapy with androgen receptor signaling inhibitors (abiraterone and/or enzalutamide). CONCLUSIONS: Our study suggests that AR immunohistochemistry may distinguish AR-null from AR-expressing cases in the metastatic setting. AR-null status informs clinical decision-making regarding continuation of therapy with androgen receptor signaling inhibitors and consideration of other treatment options. This might be a relevant and cost-effective diagnostic strategy when there is limited access and/or limited tumor material for molecular testing.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Antineoplásicos Hormonales/farmacología , Biomarcadores de Tumor/análisis , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/análisis , Anciano , Antagonistas de Receptores Androgénicos/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Biomarcadores de Tumor/genética , Biopsia , Variaciones en el Número de Copia de ADN , Resistencia a Antineoplásicos/genética , Amplificación de Genes , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Proteínas de Unión a Retinoblastoma/análisis , Proteínas de Unión a Retinoblastoma/genética , Proteína p53 Supresora de Tumor/análisis , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/análisis , Ubiquitina-Proteína Ligasas/genética
17.
Stem Cell Reports ; 14(2): 338-350, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32004492

RESUMEN

Radial glia (RG) cells are the first neural stem cells to appear during embryonic development. Adult human glioblastomas harbor a subpopulation of RG-like cells with typical RG morphology and markers. The cells exhibit the classic and unique mitotic behavior of normal RG in a cell-autonomous manner. Single-cell RNA sequencing analyses of glioblastoma cells reveal transcriptionally dynamic clusters of RG-like cells that share the profiles of normal human fetal radial glia and that reside in quiescent and cycling states. Functional assays show a role for interleukin in triggering exit from dormancy into active cycling, suggesting a role for inflammation in tumor progression. These data are consistent with the possibility of persistence of RG into adulthood and their involvement in tumor initiation or maintenance. They also provide a putative cellular basis for the persistence of normal developmental programs in adult tumors.


Asunto(s)
Glioblastoma/patología , Neuroglía/patología , Adulto , Línea Celular Tumoral , Genoma Humano , Humanos , Inflamación/patología , Mitosis , Transducción de Señal , Transcripción Genética
18.
Nat Cancer ; 1(1): 59-74, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-35118421

RESUMEN

Pancreatic cancer expression profiles largely reflect a classical or basal-like phenotype. The extent to which these profiles vary within a patient is unknown. We integrated evolutionary analysis and expression profiling in multiregion-sampled metastatic pancreatic cancers, finding that squamous features are the histologic correlate of an RNA-seq-defined basal-like subtype. In patients with coexisting basal and squamous and classical and glandular morphology, phylogenetic studies revealed that squamous morphology represented a subclonal population in an otherwise classical and glandular tumor. Cancers with squamous features were significantly more likely to have clonal mutations in chromatin modifiers, intercellular heterogeneity for MYC amplification and entosis. These data provide a unifying paradigm for integrating basal-type expression profiles, squamous histology and somatic mutations in chromatin modifier genes in the context of clonal evolution of pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma de Células Escamosas/genética , Cromatina , Humanos , Neoplasias Pancreáticas/genética , Filogenia , Neoplasias Pancreáticas
19.
Clin Cancer Res ; 26(8): 2047-2064, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31796516

RESUMEN

PURPOSE: Previous sequencing studies revealed that alterations of genes associated with DNA damage response (DDR) are enriched in men with metastatic castration-resistant prostate cancer (mCRPC). BRCA2, a DDR and cancer susceptibility gene, is frequently deleted (homozygous and heterozygous) in men with aggressive prostate cancer. Here we show that patients with prostate cancer who have lost a copy of BRCA2 frequently lose a copy of tumor suppressor gene RB1; importantly, for the first time, we demonstrate that co-loss of both genes in early prostate cancer is sufficient to induce a distinct biology that is likely associated with worse prognosis. EXPERIMENTAL DESIGN: We prospectively investigated underlying molecular mechanisms and genomic consequences of co-loss of BRCA2 and RB1 in prostate cancer. We used CRISPR-Cas9 and RNAi-based methods to eliminate these two genes in prostate cancer cell lines and subjected them to in vitro studies and transcriptomic analyses. We developed a 3-color FISH assay to detect genomic deletions of BRCA2 and RB1 in prostate cancer cells and patient-derived mCRPC organoids. RESULTS: In human prostate cancer cell lines (LNCaP and LAPC4), loss of BRCA2 leads to the castration-resistant phenotype. Co-loss of BRCA2-RB1 in human prostate cancer cells induces an epithelial-to-mesenchymal transition, which is associated with invasiveness and a more aggressive disease phenotype. Importantly, PARP inhibitors attenuate cell growth in human mCRPC-derived organoids and human CRPC cells harboring single-copy loss of both genes. CONCLUSIONS: Our findings suggest that early identification of this aggressive form of prostate cancer offers potential for improved outcomes with early introduction of PARP inhibitor-based therapy.See related commentary by Mandigo and Knudsen, p. 1784.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Proteína BRCA2 , Biomarcadores de Tumor , Genes BRCA2 , Humanos , Masculino , Fenotipo , Neoplasias de la Próstata Resistentes a la Castración/genética
20.
Mod Pathol ; 32(9): 1329-1343, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30980040

RESUMEN

Renal medullary carcinoma is a rare but highly aggressive type of renal cancer occurring in patients with sickle cell trait or rarely with other hemoglobinopathies. Loss of SMARCB1 protein expression, a core subunit of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, has emerged as a key diagnostic feature of these tumors. However, the molecular mechanism underlying this loss remains unclear. We retrospectively identified 20 patients diagnosed with renal medullary carcinoma at two institutions from 1996 to 2017. All patients were confirmed to have sickle cell trait, and all tumors exhibited a loss of SMARCB1 protein expression by immunohistochemistry. The status of SMARCB1 locus was examined by fluorescence in situ hybridization (FISH) using 3-color probes, and somatic alterations were detected by targeted next-generation sequencing platforms. FISH analysis of all 20 cases revealed 11 (55%) with concurrent hemizygous loss and translocation of SMARCB1, 6 (30%) with homozygous loss of SMARCB1, and 3 (15%) without structural or copy number alterations of SMARCB1 despite protein loss. Targeted sequencing revealed a pathogenic somatic mutation of SMARCB1 in one of these 3 cases that were negative by FISH. Tumors in the 3 subsets with different FISH findings largely exhibited similar clinicopathologic features, however, homozygous SMARCB1 deletion was found to show a significant association with the solid growth pattern, whereas tumors dominated by reticular/cribriform growth were enriched for SMARCB1 translocation. Taken together, we demonstrate that different molecular mechanisms underlie the loss of SMARCB1 expression in renal medullary carcinoma. Biallelic inactivation of SMARCB1 occurs in a large majority of cases either via concurrent hemizygous loss and translocation disrupting SMARCB1 or by homozygous loss.


Asunto(s)
Carcinoma Medular/genética , Neoplasias Renales/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Adolescente , Adulto , Carcinoma Medular/metabolismo , Niño , Femenino , Variación Genética , Humanos , Neoplasias Renales/metabolismo , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...