Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(11): e2208556, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36493355

RESUMEN

De novo designed protein switches are powerful tools to specifically and sensitively detect diverse targets with simple chemiluminescent readouts. Finding an appropriate material host for de novo designed protein switches without altering their thermodynamics while preserving their intrinsic stability over time would enable the development of a variety of sensing formats to monitor exposure to pathogens, toxins, and for disease diagnosis. Here, a de novo protein-biopolymer hybrid that maintains the detection capabilities induced by the conformational change of the incorporated proteins in response to analytes of interest is generated in multiple, shelf-stable material formats without the need of refrigerated storage conditions. A set of functional demonstrator devices including personal protective equipment such as masks and laboratory gloves, free-standing films, air quality monitors, and wearable devices is presented to illustrate the versatility of the approach. Such formats are designed to be responsive to human epidermal growth factor receptor (HER2), anti-hepatitis B (HBV) antibodies, Botulinum neurotoxin B (BoNT/B), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This combination of form and function offers wide opportunities for ubiquitous sensing in multiple environments by enabling a large class of bio-responsive interfaces of broad utility.


Asunto(s)
COVID-19 , Dispositivos Electrónicos Vestibles , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Biomarcadores
2.
Adv Sci (Weinh) ; 8(12): e2003416, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34165900

RESUMEN

Oral health monitoring is highly desired, especially for in home use, however, current methods are not sensitive enough and technically convoluted for this purpose. This paper presents incorporation of bioactive materials and colorimetric chemical sensors into routinely used oral appliances transforming them into bioresponsive, conformable interfaces. Specifically, endodontic paper points and dental floss can be functionalized to locally sense and monitor pH variations within the oral cavity via color changes. Moreover, edible colorimetric indicators are developed and used to make sensing, edible devices in the form factor of candies that can dynamically and visually respond to acidity changes in saliva. These interfaces would enable early detection of caries (e.g., using dental floss and paper points) providing low-cost point of care devices that respond in real-time by detecting pH variations in biological fluids thus bringing monitoring to home settings .


Asunto(s)
Boca/química , Salud Bucal , Higiene Bucal/métodos , Saliva/química , Humanos , Concentración de Iones de Hidrógeno
3.
Biosens Bioelectron ; 150: 111931, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31929080

RESUMEN

Transfection is a key function for many single-cell analyses. Reversible electroporation (EP) using high intensity electric fields is a simple means of transfection applicable to most cell types. For reversible EP, precise control over the electric field is critical to regulate the induced pore densities in the membrane and maintain cell viability. Individually accessible microelectrode arrays enabled by semiconductor fabrication methods have emerged as a viable technology for single-cell analyses but do not provide for effective electroporation capabilities due to the planar arrangement of electrodes. Towards the goal of a fully integrated single-cell analysis platform, we utilize a commercial complementary metal-oxide-semiconductor (CMOS) process to realize microcavities which allow for single-cell confinement with integrated three-dimensionally aligned electrodes for effective poration. The structure is formed using the inherent metal stack available within the CMOS process as a hard etch mask for deep-reactive ion etching. Using this structure, to our knowledge, we present the first on-CMOS demonstration of controlled electroporation with the goal of transfection using human embryonic kidney cells (HEK-293) stained with Calcein as a model. We report an increase in calcein leaching from the cells subject to increasing electric field intensities with subsequent reuptake confirming cell viability post electroporation. These results are supported by numerical simulation of theoretical pore density which are in good agreement with numerical simulation. Combined with simple optical or electrical feedback, the structure is suitable for precise electroporation control in single-cells.


Asunto(s)
Electroporación/instrumentación , Dispositivos Laboratorio en un Chip , Análisis de la Célula Individual/instrumentación , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Células HEK293 , Humanos , Microelectrodos , Semiconductores
4.
Proc Natl Acad Sci U S A ; 115(32): 8119-8124, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30037994

RESUMEN

The interaction between light and matter has been long explored, leading to insights based on the modulation and control of electrons and/or photons within a material. An opportunity exists in optomechanics, where the conversion of radiation into material strain and actuation is currently induced at the molecular level in liquid crystal systems, or at the microelectromechanical systems (MEMS) device scale, producing limited potential strain energy (or force) in light-driven systems. We present here flexible material composites that, when illuminated, are capable of macroscale motion, through the interplay of optically absorptive elements and low Curie temperature magnetic materials. These composites can be formed into films, sponges, monoliths, and hydrogels, and can be actuated with light at desired locations. Light-actuated elastomeric composites for gripping and releasing, heliotactic motion, light-driven propulsion, and rotation are demonstrated as examples of the versatility of this approach.

5.
Adv Mater ; 30(25): e1800598, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29717798

RESUMEN

The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems.


Asunto(s)
Hidrogeles/química , Materiales Biocompatibles , Hidrogel de Polietilenoglicol-Dimetacrilato , Iones , Polietilenglicoles , Prótesis e Implantes
6.
Adv Mater ; 30(18): e1703257, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29572979

RESUMEN

Wearable devices have emerged as powerful tools for personalized healthcare in spite of some challenges that limit their widespread applicability as continuous monitors of physiological information. Here, a materials-based strategy to add utility to traditional dielectric sensors by developing a conformal radiofrequency (RF) construct composed of an active layer encapsulated between two reverse-facing split ring resonators is applied. These small (down to 2 mm × 2 mm) passive dielectric sensors possess enhanced sensitivity and can be further augmented by functionalization of this interlayer material. Demonstrator devices are shown where the interlayer is: (i) a porous silk film, and (ii) a modified PNIPAM hydrogel that swells with pH or temperature. In vivo use is demonstrated by adhesion of the device on tooth enamel to detect foods during human ingestion. Such sensors can be easily multiplexed and yield data-rich temporal information during the diffusion of analytes within the trilayer structure. This format could be extended to a suite of interlayer materials for sensing devices of added use and specificity.


Asunto(s)
Boca , Alimentos , Humanos
7.
Nat Nanotechnol ; 12(5): 474-480, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28250472

RESUMEN

In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.


Asunto(s)
Fibroínas/química , Nanofibras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...