Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
Int J Mol Sci ; 25(5)2024 Feb 24.
Article En | MEDLINE | ID: mdl-38473903

Autoimmune polyglandular syndromes (APS) are classified into four main categories, APS1-APS4. APS1 is caused by AIRE gene loss of function mutations, while the genetic background of the other APS remains to be clarified. Here, we investigated the potential association between AIRE gene promoter Single Nucleotide Polymorphisms (SNPs) and susceptibility to APS. We sequenced the AIRE gene promoter of 74 APS patients, also analyzing their clinical and autoantibody profile, and we further conducted molecular modeling studies on the identified SNPs. Overall, we found 6 SNPs (-230Y, -655R, -261M, -380S, -191M, -402S) of the AIRE promoter in patients' DNA. Interestingly, folding free energy calculations highlighted that all identified SNPs, except for -261M, modify the stability of the nucleic acid structure. A rather similar percentage of APS3 and APS4 patients had polymorphisms in the AIRE promoter. Conversely, there was no association between APS2 and AIRE promoter polymorphisms. Further AIRE promoter SNPs were found in 4 out of 5 patients with APS1 clinical diagnosis that did not harbor AIRE loss of function mutations. We hypothesize that AIRE promoter polymorphisms could contribute to APS predisposition, although this should be validated through genetic screening in larger patient cohorts and in vitro and in vivo functional studies.


Polyendocrinopathies, Autoimmune , Humans , Syndrome , Mutation , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
2.
J Extracell Biol ; 3(1)2024 Jan.
Article En | MEDLINE | ID: mdl-38405579

The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.

3.
Cancer Discov ; 14(3): 424-445, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38197680

Castration-resistant prostate cancer (CRPC) is a heterogeneous disease associated with phenotypic subtypes that drive therapy response and outcome differences. Histologic transformation to castration-resistant neuroendocrine prostate cancer (CRPC-NE) is associated with distinct epigenetic alterations, including changes in DNA methylation. The current diagnosis of CRPC-NE is challenging and relies on metastatic biopsy. We developed a targeted DNA methylation assay to detect CRPC-NE using plasma cell-free DNA (cfDNA). The assay quantifies tumor content and provides a phenotype evidence score that captures diverse CRPC phenotypes, leveraging regions to inform transcriptional state. We tested the design in independent clinical cohorts (n = 222 plasma samples) and qualified it achieving an AUC > 0.93 for detecting pathology-confirmed CRPC-NE (n = 136). Methylation-defined cfDNA tumor content was associated with clinical outcomes in two prospective phase II clinical trials geared towards aggressive variant CRPC and CRPC-NE. These data support the application of targeted DNA methylation for CRPC-NE detection and patient stratification. SIGNIFICANCE: Neuroendocrine prostate cancer is an aggressive subtype of treatment-resistant prostate cancer. Early detection is important, but the diagnosis currently relies on metastatic biopsy. We describe the development and validation of a plasma cell-free DNA targeted methylation panel that can quantify tumor fraction and identify patients with neuroendocrine prostate cancer noninvasively. This article is featured in Selected Articles from This Issue, p. 384.


Cell-Free Nucleic Acids , Prostatic Neoplasms, Castration-Resistant , Male , Humans , DNA Methylation , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/genetics , Biopsy , Cell-Free Nucleic Acids/genetics
4.
J Extracell Biol ; 2(9)2023 Sep.
Article En | MEDLINE | ID: mdl-38046436

Multi-analyte liquid biopsies represent an emerging opportunity for non-invasive cancer assessment. We developed ONCE (ONe Aliquot for Circulating Elements), an approach for the isolation of extracellular vesicles (EV) and cell-free DNA (cfDNA) from a single aliquot of blood. We assessed ONCE performance to classify HER2-positive early-stage breast cancer (BrCa) patients by combining EV-associated RNA (EV-RNA) and cfDNA signals on n=64 healthy donors (HD) and non-metastatic BrCa patients. Specifically, we isolated EV-enriched samples by a charge-based (CB) method and investigated EV-RNA and cfDNA by next-generation sequencing (NGS) and by digital droplet PCR (ddPCR). Sequencing of cfDNA and EV-RNA from HER2- and HER2+ patients demonstrated concordance with in situ molecular analyses of matched tissues. Combined analysis of the two circulating analytes by ddPCR showed increased sensitivity in ERBB2/HER2 detection compared to single nucleic acid components. Multi-analyte liquid biopsy prediction performance was comparable to tissue-based sequencing results from TCGA. Also, imaging flow cytometry analysis revealed HER2 protein on the surface of EV isolated from the HER2+ BrCa plasma, thus corroborating the potential relevance of studying EV as companion analyte to cfDNA. This data confirms the relevance of combining cfDNA and EV-RNA for HER2 cancer assessment and supports the ONCE as a valuable tool for multi-analytes liquid biopsies' clinical implementation.

5.
Protein Sci ; 32(8): e4729, 2023 08.
Article En | MEDLINE | ID: mdl-37468946

In an effort to investigate the molecular determinants of ligand recognition of the C-terminal SH2 domain of the SHP2 protein, we conducted extensive site-directed mutagenesis and kinetic binding experiments with a peptide mimicking a specific portion of a physiological ligand (the scaffold protein Gab2). Obtained data provided an in-depth characterization of the binding reaction, allowing us to pinpoint residues topologically far from the binding pocket of the SH2 domain to have a role in the recognition and binding of the peptide. The presence of a sparse energetic network regulating the interaction with Gab2 was identified and characterized through double mutant cycle analysis, performed by challenging all the designed site-directed variants of C-SH2 with a Gab2 peptide mutated at +3 position relative to its phosphorylated tyrosine, a key residue for C-SH2 binding specificity. Results highlighted non-optimized residues involved in the energetic network regulating the binding with Gab2, which may be at the basis of the ability of this SH2 domain to interact with different partners in the intracellular environment. Moreover, a detailed analysis of kinetic and thermodynamic parameters revealed the role of the residue at +3 position on Gab2 in the early and late events of the binding reaction with the C-SH2 domain.


Peptides , src Homology Domains , Ligands , Peptides/metabolism , Mutagenesis, Site-Directed , Tyrosine/metabolism , Protein Binding
6.
Int J Mol Sci ; 24(12)2023 Jun 14.
Article En | MEDLINE | ID: mdl-37373284

SPOP (Speckle-type POZ protein) is an E3 ubiquitin ligase adaptor protein that mediates the ubiquitination of several substrates. Furthermore, SPOP is responsible for the regulation of both degradable and nondegradable polyubiquitination of a number of substrates with diverse biological functions. The recognition of SPOP and its physiological partners is mediated by two protein-protein interaction domains. Among them, the MATH domain recognizes different substrates, and it is critical for orchestrating diverse cellular pathways, being mutated in several human diseases. Despite its importance, the mechanism by which the MATH domain recognizes its physiological partners has escaped a detailed experimental characterization. In this work, we present a characterization of the binding mechanism of the MATH domain of SPOP with three peptides mimicking the phosphatase Puc, the chromatin component MacroH2A, and the dual-specificity phosphatase PTEN. Furthermore, by taking advantage of site-directed mutagenesis, we address the role of some key residues of MATH in the binding process. Our findings are briefly discussed in the context of previously existing data on the MATH domain.


Nuclear Proteins , Repressor Proteins , Humans , Repressor Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Ubiquitination
7.
Microbiology (Reading) ; 169(4)2023 04.
Article En | MEDLINE | ID: mdl-37040165

Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6 and a cofactor for many essential metabolic processes such as amino acid biosynthesis and one carbon metabolism. 4'-deoxypyridoxine (4dPN) is a long known B6 antimetabolite but its mechanism of action was not totally clear. By exploring different conditions in which PLP metabolism is affected in the model organism Escherichia coli K12, we showed that 4dPN cannot be used as a source of vitamin B6 as previously claimed and that it is toxic in several conditions where vitamin B6 homeostasis is affected, such as in a B6 auxotroph or in a mutant lacking the recently discovered PLP homeostasis gene, yggS. In addition, we found that 4dPN sensitivity is likely the result of multiple modes of toxicity, including inhibition of PLP-dependent enzyme activity by 4'-deoxypyridoxine phosphate (4dPNP) and inhibition of cumulative pyridoxine (PN) uptake. These toxicities are largely dependent on the phosphorylation of 4dPN by pyridoxal kinase (PdxK).


Escherichia coli K12 , Escherichia coli Proteins , Pyridoxine/metabolism , Vitamin B 6/metabolism , Escherichia coli K12/metabolism , Pyridoxal Phosphate/metabolism , Homeostasis , Vitamins , Carrier Proteins , Escherichia coli Proteins/metabolism
8.
J Biol Chem ; 299(3): 102983, 2023 03.
Article En | MEDLINE | ID: mdl-36739950

Although cooperativity is a well-established and general property of folding, our current understanding of this feature in multidomain folding is still relatively limited. In fact, there are contrasting results indicating that the constituent domains of a multidomain protein may either fold independently on each other or exhibit interdependent supradomain phenomena. To address this issue, here we present the comparative analysis of the folding of a tandem repeat protein, comprising two contiguous PDZ domains, in comparison to that of its isolated constituent domains. By analyzing in detail the equilibrium and kinetics of folding at different experimental conditions, we demonstrate that despite each of the PDZ domains in isolation being capable of independent folding, at variance with previously characterized PDZ tandem repeats, the full-length construct folds and unfolds as a single cooperative unit. By exploiting quantitatively, the comparison of the folding of the tandem repeat to those observed for its constituent domains, as well as by characterizing a truncated variant lacking a short autoinhibitory segment, we successfully rationalize the molecular basis of the observed cooperativity and attempt to infer some general conclusions for multidomain systems.


Protein Conformation , Protein Folding , Proteins , Kinetics , Models, Molecular , Proteins/chemistry , Protein Domains
9.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article En | MEDLINE | ID: mdl-36555586

SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.


Tyrosine , src Homology Domains , Phosphotyrosine/metabolism , Tyrosine/metabolism , Signal Transduction , Protein Binding , Binding Sites
10.
Arch Biochem Biophys ; 731: 109444, 2022 11 30.
Article En | MEDLINE | ID: mdl-36265650

Two thirds of eukaryotic proteins have evolved as multidomain constructs, and in vivo, domains fold within a polypeptide chain, with inter-domain interactions possibly crucial for correct folding. However, to date, most of the experimental folding studies are based on domains in isolation. In an effort to better understand multidomain folding, in this work we analyzed, through equilibrium and kinetic folding experiments, the folding properties of the Growth factor receptor-bound protein 2 (Grb2), composed by one SRC homology 2 domain flanked by two SRC homology 3 domains. In particular we compared the kinetic features of the multidomain construct with the domains expressed in isolation. By performing single and double mixing folding experiments, we demonstrated that the folding of the SH2 domain is kinetically trapped in a misfolded intermediate when tethered to the C-SH3. Importantly, within the multidomain construct, misfolding occurred independently if refolding is started with C-SH3 in its unfolded or native state. Interestingly, our data reported a peculiar scenario, in which SH2 and C-SH3 domain reciprocally and transiently interact during folding. Altogether, the analysis of kinetic folding data provided a quantitative description of the multidomain folding of Grb2 protein, discussed under the light of previous works on multidomain folding.


Peptides , src Homology Domains , Kinetics , Peptides/chemistry , Protein Folding
11.
Protein Sci ; 31(9): e4396, 2022 09.
Article En | MEDLINE | ID: mdl-36040267

PDZ domains are the most diffused protein-protein interaction modules of the human proteome and are often present in tandem repeats. An example is PDZD2, a protein characterized by the presence of six PDZ domains that undergoes a proteolytic cleavage producing sPDZD2, comprising a tandem of two PDZ domains, namely PDZ5 and PDZ6. Albeit the physiopathological importance of sPDZD2 is well-established, the interaction with endogenous ligands has been poorly characterized. To understand the determinants of the stability and function of sPDZD2, we investigated its folding pathway. Our data highlights the presence of a complex scenario involving a transiently populated folding intermediate that may be accumulated from the concurrent denaturation of both PDZ5 and PDZ6 domains. Importantly, double jump kinetic experiments allowed us to pinpoint the ability of this transient intermediate to bind the physiological ligand of sPDZD2 with increased affinity compared to the native state. In summary, our results provide an interesting example of a functionally competent misfolded intermediate, which may exert a cryptic function that is not captured from the analysis of the native state only.


PDZ Domains , Tandem Repeat Sequences , Humans , Kinetics , Ligands , Protein Folding
12.
Biomolecules ; 12(8)2022 07 22.
Article En | MEDLINE | ID: mdl-35892324

SH2 domains are structural modules specialized in the recognition and binding of target sequences containing a phosphorylated tyrosine residue. They are mostly incorporated in the 3D structure of scaffolding proteins that represent fundamental regulators of several signaling pathways. Among those, Crkl plays key roles in cell physiology by mediating signals from a wide range of stimuli, and its overexpression is associated with several types of cancers. In myeloid cells expressing the oncogene BCR/ABL, one interactor of Crkl-SH2 is the focal adhesion protein Paxillin, and this interaction is crucial in leukemic transformation. In this work, we analyze both the folding pathway of Crkl-SH2 and its binding reaction with a peptide mimicking Paxillin, under different ionic strength and pH conditions, by using means of fluorescence spectroscopy. From a folding perspective, we demonstrate the presence of an intermediate along the reaction. Moreover, we underline the importance of the electrostatic interactions in the early event of recognition, occurring between the phosphorylated tyrosine of the Paxillin peptide and the charge residues of Crkl-SH2. Finally, we highlight a pivotal role of a highly conserved histidine residue in the stabilization of the binding complex. The experimental results are discussed in light of previous works on other SH2 domains.


Nuclear Proteins , src Homology Domains , Nuclear Proteins/metabolism , Oncogenes , Paxillin , Phosphorylation , Protein Binding , Tyrosine/metabolism , src Homology Domains/physiology
13.
Protein Sci ; 31(6): e4332, 2022 06.
Article En | MEDLINE | ID: mdl-35634781

Albeit SH2 domains are abundant protein-protein interaction modules with fundamental roles in the regulation of several physiological and molecular pathways in the cell, the available information about the determinants of their thermodynamic stability and folding properties are still very limited. In this work, we provide a quantitative characterization of the folding pathway of the C-terminal SH2 domain of SHP2, conducted through a combination of site-directed mutagenesis and kinetic (un)folding experiments (Φ-value analysis). The energetic profile of the folding reaction of the C-SH2 domain is described by a three-state mechanism characterized by the presence of two transition states and a high-energy intermediate. The production of 29 site-directed variants allowed us to calculate the degree of native-like interactions occurring in the early and late events of the folding reaction. Data analysis highlights the presence of a hydrophobic folding nucleus surrounded by a lower degree of structure in the early events of folding, further consolidated as the reaction proceeds towards the native state. Interestingly, residues physically located in the functional region of the domain reported unusual Φ-values, a hallmark of the presence of transient misfolding. We compared our results with previous ones obtained for the N-terminal SH2 domain of SHP2. Notably, a conserved complex folding mechanism implying the presence of a folding intermediate arise from comparison, and the relative stability of such intermediate appears to be highly sequence dependent. Data are discussed under the light of previous works on SH2 domains.


Protein Folding , src Homology Domains , Kinetics , Mutagenesis, Site-Directed , Thermodynamics
14.
Biomolecules ; 12(2)2022 01 26.
Article En | MEDLINE | ID: mdl-35204709

The vast majority of our current knowledge about the biochemical and biophysical properties of proteins derives from in vitro studies conducted on isolated globular domains. However, a very large fraction of the proteins expressed in the eukaryotic cell are structurally more complex. In particular, the discovery that up to 40% of the eukaryotic proteins are intrinsically disordered, or possess intrinsically disordered regions, and are highly dynamic entities lacking a well-defined three-dimensional structure, revolutionized the structure-function paradigm and our understanding of proteins. Moreover, proteins are mostly characterized by the presence of multiple domains, influencing each other by intramolecular interactions. Furthermore, proteins exert their function in a crowded intracellular milieu, transiently interacting with a myriad of other macromolecules. In this review we summarize the literature tackling these themes from both the theoretical and experimental perspectives, highlighting the effects on protein folding and function that are played by (i) flanking disordered tails; (ii) contiguous protein domains; (iii) interactions with the cellular environment, defined as quinary structures. We show that, in many cases, both the folding and function of protein domains is remarkably perturbed by the presence of these interactions, pinpointing the importance to increase the level of complexity of the experimental work and to extend the efforts to characterize protein domains in more complex contexts.


Intrinsically Disordered Proteins , Protein Folding , Intrinsically Disordered Proteins/chemistry , Macromolecular Substances , Protein Conformation , Protein Domains , Proteins/chemistry
15.
Cancer Lett ; 524: 57-69, 2022 01 01.
Article En | MEDLINE | ID: mdl-34656688

Growing bodies of evidence have demonstrated that the identification of prostate cancer (PCa) biomarkers in the patients' blood and urine may remarkably improve PCa diagnosis and progression monitoring. Among diverse cancer-derived circulating materials, extracellular RNA molecules (exRNAs) represent a compelling component to investigate cancer-related alterations. Once outside the intracellular environment, exRNAs circulate in biofluids either in association with protein complexes or encapsulated inside extracellular vesicles (EVs). Notably, EV-associated RNAs (EV-RNAs) were used for the development of several assays (such as the FDA-approved Progensa Prostate Cancer Antigen 3 (PCA3 test) aiming at improving early PCa detection. EV-RNAs encompass a mixture of species, including small non-coding RNAs (e.g. miRNA and circRNA), lncRNAs and mRNAs. Several methods have been proposed to isolate EVs and relevant RNAs, and to perform RNA-Seq studies to identify potential cancer biomarkers. However, EVs in the circulation of a cancer patient include a multitude of diverse populations that are released by both cancer and normal cells from different tissues, thereby leading to a heterogeneous EV-RNA-associated transcriptional signal. Decrypting the complexity of such a composite signal is nowadays the major challenge faced in the identification of specific tumor-associated RNAs. Multiple deconvolution algorithms have been proposed so far to infer the enrichment of cancer-specific signals from gene expression data. However, novel strategies for EVs sorting and sequencing of RNA associated to single EVs populations will remarkably facilitate the identification of cancer-related molecules. Altogether, the studies summarized here demonstrate the high potential of using EV-RNA biomarkers in PCa and highlight the urgent need of improving technologies and computational approaches to characterize specific EVs populations and their relevant RNA cargo.


Antigens, Neoplasm/genetics , Cell-Free Nucleic Acids/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Biomarkers, Tumor/genetics , Extracellular Vesicles/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , RNA-Seq
16.
Curr Opin Struct Biol ; 72: 153-160, 2022 02.
Article En | MEDLINE | ID: mdl-34902817

Intrinsically disordered proteins (IDPs) can be generally described as a class of proteins that lack a well-defined ordered structure in isolation at physiological conditions. Upon binding to their physiological ligands, IDPs typically undergo a disorder-to-order transition, which may or may not lead to the complete folding of the IDP. In this short review, we focus on some of the key findings pertaining to the mechanisms of such induced folding. In particular, first we describe the general features of the reaction; then, we discuss some of the most remarkable findings obtained from applying protein engineering in synergy with kinetic studies to induced folding; and finally, we offer a critical view on some of the emerging themes when considering the structural heterogeneity of IDPs vis-à-vis to their inherent frustration.


Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/chemistry , Kinetics , Protein Conformation , Protein Engineering , Protein Folding
17.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article En | MEDLINE | ID: mdl-34947971

Crkl is a protein involved in the onset of several cancer pathologies that exerts its function only through its protein-protein interaction domains, a SH2 domain and two SH3 domains. SH3 domains are small protein interaction modules that mediate the binding and recognition of proline-rich sequences. One of the main physiological interactors of Crkl is C3G (also known as RAPGEF1), an interaction with key implications in regulating cellular growth and differentiation, cell morphogenesis and adhesion processes. Thus, understanding the interaction between Crkl and C3G is fundamental to gaining information about the molecular determinants of the several cancer pathologies in which these proteins are involved. In this paper, through a combination of fast kinetics at different experimental conditions and site-directed mutagenesis, we characterize the binding reaction between the N-SH3 domain of Crkl and a peptide mimicking a specific portion of C3G. Our results show a clear effect of pH on the stability of the complex, due to the protonation of negatively charged residues in the binding pocket of N-SH3. Our results are discussed under the light of previous work on SH3 domains.


Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Guanine Nucleotide-Releasing Factor 2/metabolism , Mutagenesis, Site-Directed/methods , Adaptor Proteins, Signal Transducing/genetics , Binding Sites , Cell Adhesion , Cell Differentiation , Cell Proliferation , Guanine Nucleotide-Releasing Factor 2/chemistry , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Static Electricity
18.
Protein Sci ; 30(12): 2385-2395, 2021 12.
Article En | MEDLINE | ID: mdl-34605082

SH2 domains are a class of protein-protein interaction modules with the function to recognize and bind sequences characterized by the presence of a phosphorylated tyrosine. SHP2 is a protein phosphatase involved in the Ras-ERK1/2 signaling pathway that possess two SH2 domains, namely, N-SH2 and C-SH2, that mediate the interaction of SHP2 with various partners and determine the regulation of its catalytic activity. One of the main interactors of the SH2 domains of SHP2 is Gab2, a scaffolding protein with critical role in determining cell differentiation. Despite their key biological role and the importance of a correct native fold to ensure it, the mechanism of binding of SH2 domains with their ligands and the determinants of their stability have been poorly characterized. In this article, we present a comprehensive kinetic study of the folding of the C-SH2 domain and the binding mechanism with a peptide mimicking a region of Gab2. Our data, obtained at different pH and ionic strength conditions and supported by site-directed mutagenesis, highlight the role of electrostatic interactions in the early events of recognition. Interestingly, our results suggest a key role of a highly conserved histidine residue among SH2 family in the interaction with negative charges carried by the phosphotyrosine of Gab2. Moreover, the analysis of the equilibrium and kinetic folding data of C-SH2 describes a complex mechanism implying a change in rate-limiting step at high denaturant concentrations. Our data are discussed under the light of previous works on N-SH2 domain of SHP2 and other SH2 domains.


Adaptor Proteins, Signal Transducing/chemistry , Histidine/chemistry , Peptides/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Histidine/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Mutation , Peptides/genetics , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Thermodynamics , Urea/chemistry , src Homology Domains
19.
Biol Direct ; 16(1): 15, 2021 10 12.
Article En | MEDLINE | ID: mdl-34641953

The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.


Neoplasms , Virus Diseases , Humans , Ligands , Neoplasms/drug therapy , Neoplasms/genetics , PDZ Domains , Protein Binding , Proteins
20.
J Mol Biol ; 433(15): 167087, 2021 07 23.
Article En | MEDLINE | ID: mdl-34089717

Our current knowledge of protein folding is primarily based on experimental data obtained from isolated domains. In fact, because of their complexity, multidomain proteins have been elusive to the experimental characterization. Thus, the folding of a domain in isolation is generally assumed to resemble what should be observed for more complex structural architectures. Here we compared the folding mechanism of a protein domain in isolation and in the context of its supramodular multidomain structure. By carrying out an extensive mutational analysis we illustrate that while the early events of folding are malleable and influenced by the absence/presence of the neighboring structures, the late events appear to be more robust. These effects may be explained by analyzing the local frustration patterns of the domain, providing critical support for the funneled energy landscape theory of protein folding, and highlighting the role of protein frustration in sculpting the early events of the reaction.


Mutation , Proteins/chemistry , Models, Molecular , Protein Conformation , Protein Domains , Protein Folding , Proteins/genetics , Thermodynamics
...