Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biometals ; 35(6): 1255-1269, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36075996

RESUMEN

In order to achieve the food demand of a growing population, agricultural productivity needs to be increased by employing safe strategies. In the present study we have evaluated ZnONPs that were synthesized from the culture supernatant of Bacillus subtilis. Bio mimetically synthesized ZnONPs showed a surface resonance peak of 355 nm corresponding to NPs formation. Further, NPs were examined for their size, shape and element confirmation by DLS, AFM, SEM, TEM and EDAX, which confirmed the synthesized NPs were nearly spherical in size with average diameter of 32 nm by TEM. Surface charge of + 34.3 mV was observed for NPs with a low poly-dispersity index of 0.21. In vitro efficacy studies against fungi Colletotrichum capsici, Sclerotium rolfsii, Alternaria solani and Fusarium oxysporum f. sp. cicero showed up to 99% mycelial growth inhibition at 0.125% ZnONPs. Further, in-vitro disk-diffusion assay showed inhibition zones of 23 ± 0.4 mm and 12.67 ± 0.24 mm for Xanthomonas axonopodis pv. punicae (Xap) and Xanthomonas oryzae pv. oryzae (Xoo) bacterial cultures. Plant toxicity study was observed that ≤ 0.14% NPs concentration was safe under greenhouse conditions. Overall, the present study emphasizes the potential effect of ZnONPs against agricultural pathogens which play an important role in agriculture production.


Asunto(s)
Bacillus , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Extractos Vegetales , Antibacterianos
2.
Int J Biol Macromol ; 156: 1387-1395, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760011

RESUMEN

Damping-off disease in seeds and young seedlings in agricultural crops is a major fungal disease that limits the agriculture production. Frequent use of synthetic fungicides against damping-off diseases is known to hamper the environmental balance. Thus, an alternative approach needs to be explored for the management of such economically important fungal diseases. In the present study, simple, economically feasible chitosan-coupled copper nanoparticles (Ch-CuNPs) were synthesized and demonstrated antifungal activity against damping-off disease causing phytopathogens, Rhizoctonia solani and Pythium aphanidermatum. Physico-chemical studies confirmed the size, shape, surface charge, element confirmation and mono-dispersed nature of Ch-CuNPs. In vitro efficacy studies revealed up to 98% mycelial growth inhibition at 0.1% Ch-CuNPs. An extracellular conductivity study of the mycelium showed cellular content leakage within 12 h of treatment. Further, plant toxicity study against chili, cowpea and tomato plants; showed that ≤0.2% NPs were safe under greenhouse conditions. NPs also exhibited growth-promoting activity with chili seeds, by overcoming the limited germination rate of susceptible seeds. Overall, the present study emphasizes the benefits of synthesized Ch-CuNPs on agricultural crops as fungicide and growth-promoter, as well as a safe alternative to pesticides in order to avoid hazardous effect on the environment.


Asunto(s)
Quitosano/química , Quitosano/farmacología , Cobre/química , Nanopartículas del Metal/química , Enfermedades de las Plantas/microbiología , Pythium/efectos de los fármacos , Rhizoctonia/efectos de los fármacos , Técnicas de Química Sintética , Estudios de Factibilidad , Nanotecnología , Pythium/fisiología , Rhizoctonia/fisiología , Propiedades de Superficie
3.
J Biotechnol ; 309: 20-28, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31863800

RESUMEN

To meet the food demand of growing population, agricultural productivity needs to be increased by employing safe strategies without harming ecosystem. Silver nanoparticle (AgNP) using a green approach has become a promising substitute to the synthetic pesticides to overcome pest menace. In this study, AgNPs were synthesized from Solanum torvum fruit extract and their bactericidal property against phyto bacteria was shown. UV-vis spectroscopic observation revealed a surface resonance peak of 440 nm corresponding to the formation of AgNPs. Microscopic and particle-size analyses showed a nearly spherical size, with an average diameter of 27 nm. Surface charge and polydispersity index of the synthesized AgNPs were -11.8 mV and 0.29, respectively. Powder X-ray diffraction, energy-dispersive X-ray and Infrared spectroscopy techniques were used to explore phase formation, composition and possible biological molecules involved in AgNP formation. AgNPs exhibited minimum inhibitory concentrations of 6.25 µg mL-1 and 12.5 µg mL-1 against bacterial plant pathogens Xanthomonas axonopodis pv. punicae and Ralstonia solanacearum. In-vitro disk-diffusion assay showed inhibition zones of 11.4 ± 1 mm for R. solanacearum and 18.1 ± 1 mm for X. axonopodis pv. punicae treated with 50 µg mL-1 AgNPs. The AgNPs generated intracellular reactive oxygen species in the pathogens. DNA damage and DNA replication inhibition studies showed genotoxicity of AgNPs to the bacterial cells. A plant toxicity study demonstrated a nontoxic effect of the synthesized NPs. Overall; the results show that AgNPs can be used as an economically feasible, ecologically safe and effective approach to overcome bacterial diseases.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Ralstonia solanacearum/efectos de los fármacos , Plata/química , Solanum/química , Xanthomonas axonopodis/efectos de los fármacos , Bacterias/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN Bacteriano/análisis , Frutas/química , Tecnología Química Verde , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica , Tamaño de la Partícula , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...