Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 253
1.
Sci Rep ; 14(1): 11557, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773352

Juvenile loneliness is a risk factor for psychopathology in later life. Deprivation of early social experience due to peer rejection has a detrimental impact on emotional and cognitive brain function in adulthood. Accumulating evidence indicates that soy peptides have many positive effects on higher brain function in rodents and humans. However, the effects of soy peptide use on juvenile social isolation are unknown. Here, we demonstrated that soy peptides reduced the deterioration of behavioral and cellular functions resulting from juvenile socially-isolated rearing. We found that prolonged social isolation post-weaning in male C57BL/6J mice resulted in higher aggression and impulsivity and fear memory deficits at 7 weeks of age, and that these behavioral abnormalities, except impulsivity, were mitigated by ingestion of soy peptides. Furthermore, we found that daily intake of soy peptides caused upregulation of postsynaptic density 95 in the medial prefrontal cortex and phosphorylation of the cyclic adenosine monophosphate response element binding protein in the hippocampus of socially isolated mice, increased phosphorylation of the adenosine monophosphate-activated protein kinase in the hippocampus, and altered the microbiota composition. These results suggest that soy peptides have protective effects against juvenile social isolation-induced behavioral deficits via synaptic maturation and cellular functionalization.


Aggression , Dietary Supplements , Fear , Hippocampus , Mice, Inbred C57BL , Social Isolation , Animals , Social Isolation/psychology , Male , Fear/drug effects , Aggression/drug effects , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Soybean Proteins/pharmacology , Memory/drug effects , Behavior, Animal/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Disks Large Homolog 4 Protein/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
2.
Mol Brain ; 17(1): 20, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685046

While the excessive inflammation in cancer cachexia is well-known to be induced by the overproduction of inflammatory mediators in the periphery, microflora disruption and brain dysfunction are also considered to contribute to the induction of cancer cachexia. Hypothalamic microglia play a crucial role in brain inflammation and central-peripheral immune circuits via the production of inflammatory mediators. In the present study, we evaluated possible changes in excessive secretion of gut microbiota-derived endotoxin and the expression timeline of several inflammation-regulatory mediators and their inhibiting modulators in hypothalamic microglia of a mouse model of cancer cachexia following transplantation of pancreatic cancer cells. We demonstrated that the plasma level of lipopolysaccharide (LPS) was significantly increased with an increase in anaerobic bacteria, especially Firmicutes, in the gut at the late stage of tumor-bearing mice that exhibited dramatic appetite loss, sarcopenia and severe peripheral immune suppression. At the early stage, in which tumor-bearing mice had not yet displayed "cachexia symptoms", the mRNA expression of pro-inflammatory cytokines, but not of the neurodegenerative and severe inflammatory modulator lipocalin-2 (LCN2), was significantly increased, whereas at the late "cachexia stage", the level of LCN2 mRNA was significantly increased along with significant decreases in levels of inhibitory immune checkpoint receptors programmed death receptor-1 (PD-1) and CD112R in hypothalamic microglia. In addition, a high density of activated neurons in the paraventricular nucleus (PVN) of the hypothalamus region and a significant increase in corticosterone secretion were found in cachexia model mice. Related to the cachexia state, released corticosterone was clearly increased in normal mice with specific activation of PVN neurons. A marked decrease in the natural killer cell population was also observed in the spleen of mice with robust activation of PVN neurons as well as mice with cancer cachexia. On the other hand, in vivo administration of LPS in normal mice induced hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. These findings suggest that the induction of cancer cachexia may parallel exacerbation of the hypothalamic inflammatory status with polarization to microglia expressed with low levels of inhibitory immune checkpoint receptors following LPS release from the gut microflora.


Cachexia , Hypothalamus , Lipocalin-2 , Lipopolysaccharides , Microglia , Animals , Cachexia/complications , Cachexia/pathology , Microglia/metabolism , Hypothalamus/metabolism , Lipocalin-2/metabolism , Lipopolysaccharides/pharmacology , Male , Cell Line, Tumor , Mice , Programmed Cell Death 1 Receptor/metabolism , Gastrointestinal Microbiome , Cytokines/metabolism , Neoplasms/complications , Mice, Inbred C57BL , Inflammation Mediators/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
3.
Neuropsychopharmacol Rep ; 44(1): 250-255, 2024 Mar.
Article En | MEDLINE | ID: mdl-38058257

Quantifying cytosine modifications in various brain regions provides important insights into the gene expression regulation and pathophysiology of neuropsychiatric disorders. In this study, we quantified 5-methylcytosine (5-mC), 5-hydroxymethylation (5-hmC), and 5-formylcytosine (5-fC) levels in five brain regions (the frontal lobe, cerebral cortical region without frontal lobe, hippocampus, basal ganglia, and the cerebellum) and the heart at three developmental periods (12, 48, and 101 weeks). We observed significant regional variations in cytosine modification. Notably, regional variations were generally maintained throughout development, suggesting that epigenetic regulation is unique to each brain region and remains relatively stable with age. The 5-mC and 5-hmC levels were positively correlated, although the extent of the correlations seemed to differ in different brain regions. On the contrary, 5-fC levels did not correlate with 5-mC or 5-hmC levels. Additionally, we observed an age-dependent decrease in 5-fC levels in the basal ganglia, suggesting a unique epigenetic regulation mechanism. Further high-resolution studies using animal models of neuropsychiatric disorders as well as postmortem brain evaluation are warranted.


Cytosine , Epigenesis, Genetic , Animals , Mice , Cytosine/metabolism , 5-Methylcytosine/metabolism , Brain/metabolism , Cerebellum/metabolism
4.
EMBO J ; 42(16): e111133, 2023 08 15.
Article En | MEDLINE | ID: mdl-37431790

Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.


Cellular Senescence , Serotonin , Animals , Mice , Serotonin/metabolism , Cellular Senescence/physiology , Aging/metabolism , Cell Death , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Mole Rats/metabolism
5.
Neurobiol Pain ; 14: 100133, 2023.
Article En | MEDLINE | ID: mdl-37274841

Persistent pain signals cause brain dysfunction and can further prolong pain. In addition, the physical restriction of movement (e.g., by a cast) can cause stress and prolong pain. Recently, it has been recognized that exercise therapy including rehabilitation is effective for alleviating chronic pain. On the other hand, physical stress and the restriction of movement can prolong pain. In this review, we discuss the neural circuits involved in the control of pain prolongation and the mechanisms of exercise-induced hypoalgesia (EIH). We also discuss the importance of the mesolimbic dopaminergic network in these phenomena.

6.
Biochem Biophys Res Commun ; 648: 36-43, 2023 03 12.
Article En | MEDLINE | ID: mdl-36724558

It is considered that sensory neurons extend into the tumor microenvironment (TME), which could be associated with tumor growth. However, little is known about how sensory signaling could promote tumor progression. In this study, chemogenetic activation of transient receptor potential vanilloid 1 (Trpv1)-positive sensory neurons (C-fibers) by the microinjection of AAV-hSyn-FLEX-hM3Dq-mCherry into the sciatic nerve dramatically increased tumor volume in tumor-bearing Trpv1-Cre mice. This activation in Trpv1::hM3Dq mice that had undergone tumor transplantation significantly reduced the population of tumor-infiltrating CD4+ T cells and increased the mRNA level of the M2-macrophage marker, CX3C motif chemokine receptor 1 (Cx3cr1) in immunosuppressive cells, such as tumor-associated macrophages (TAMs) and tumor-infiltrating monocytic myeloid-derived suppressor cells (M-MDSCs). Under these conditions, we found a significant correlation between the decreased expression of the M1-macrophage marker Tnf and tumor volume. These findings suggest that repeated activation of Trpv1-positive sensory neurons may facilitate tumor growth along with changes in tumor-infiltrating immune cells.


Antineoplastic Agents , Mice , Animals , Antineoplastic Agents/metabolism , Macrophages/metabolism , Sensory Receptor Cells/metabolism , Cell Line, Tumor , Neoplasm Transplantation , Tumor Microenvironment , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
7.
Mol Brain ; 16(1): 19, 2023 02 03.
Article En | MEDLINE | ID: mdl-36737827

A growing body of evidence suggests that intractable pain reduces both the quality of life and survival in cancer patients. In the present study, we evaluated whether chronic pain stimuli could directly affect cancer pathology using tumor-bearing mice. For this purpose, we used two different models of chronic pain in mice, neuropathic pain and persistent postsurgical pain, with Lewis lung carcinoma (LLC) as tumor cells. We found that tumor growth was dramatically promoted in these pain models. As well as these pain models, tumor growth of LLC, severe osteosarcoma (AXT) and B16 melanoma cells was significantly promoted by concomitant activation of sensory neurons in AAV6-hM3Dq-injected mice treated with the designer drug clozapine-N-oxide (CNO). Significant increases in mRNA levels of vascular endothelial growth factor-A (Vegfa), tachykinin precursor 1 (Tac1) and calcitonin-related polypeptide alpha (Calca) in the ipsilateral side of dorsal root ganglion of AAV6-hM3Dq-injected mice were observed by concomitant activation of sensory neurons due to CNO administration. Moreover, in a model of bone cancer pain in which mice were implanted with AXT cells into the right femoral bone marrow cavity, the survival period was significantly prolonged by repeated inhibition of sensory neurons of AAV6-hM4Di-injected mice by CNO administration. These findings suggest that persistent pain signals may promote tumor growth by the increased expression of sensory-located peptides and growth factors, and controlling cancer pain may prolong cancer survival.


Bone Neoplasms , Cancer Pain , Chronic Pain , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Cancer Pain/complications , Chronic Pain/metabolism , Quality of Life , Sensory Receptor Cells/metabolism , Bone Neoplasms/complications
8.
Mol Brain ; 16(1): 18, 2023 02 02.
Article En | MEDLINE | ID: mdl-36732798

A growing body of evidence suggests that excess stress could aggravate tumor progression. The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the adaptation to stress because the hypothalamic-pituitary-adrenal (HPA) axis can be activated by inducing the release of corticotropin-releasing hormone (CRH) from the PVN. In this study, we used pharmacogenetic techniques to investigate whether concomitant activation of CRHPVN neurons could directly contribute to tumor progression. Tumor growth was significantly promoted by repeated activation of CRHPVN neurons, which was followed by an increase in the plasma levels of corticosterone. Consistent with these results, chronic administration of glucocorticoids induced tumor progression. Under the concomitant activation of CRHPVN neurons, the number of cytotoxic CD8+ T cells in the tumor microenvironment was dramatically decreased, and the mRNA expression levels of hypoxia inducible factor 1 subunit α (HIF1α), glucocorticoid receptor (GR) and Tsc22d3 were upregulated in inhibitory lymphocytes, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Furthermore, the mRNA levels of various kinds of driver molecules related to tumor progression and tumor metastasis were prominently elevated in cancer cells by concomitant activation of CRHPVN neurons. These findings suggest that repeated activation of the PVN-CRHergic system may aggravate tumor growth through a central-peripheral-associated tumor immune system.


CD8-Positive T-Lymphocytes , Paraventricular Hypothalamic Nucleus , Paraventricular Hypothalamic Nucleus/metabolism , CD8-Positive T-Lymphocytes/metabolism , Hypothalamus/metabolism , Corticotropin-Releasing Hormone/metabolism , Corticosterone , Neurons/metabolism , RNA, Messenger/metabolism
9.
Br J Cancer ; 127(8): 1565-1574, 2022 11.
Article En | MEDLINE | ID: mdl-35945243

BACKGROUND: It has been considered that activation of peripheral µ-opioid receptors (MORs) induces side effects of opioids. In this study, we investigated the possible improvement of the immune system in tumour-bearing mice by systemic administration of the peripheral MOR antagonist naldemedine. METHODS: The inhibitory effect of naldemedine on MOR-mediated signalling was tested by cAMP inhibition and ß-arrestin recruitment assays using cultured cells. We assessed possible changes in tumour progression and the number of splenic lymphocytes in tumour-bearing mice under the repeated oral administration of naldemedine. RESULTS: Treatment with naldemedine produced a dose-dependent inhibition of both the decrease in the cAMP level and the increase in ß-arrestin recruitment induced by the MOR agonists. Repeated treatment with naldemedine at a dose that reversed the morphine-induced inhibition of gastrointestinal transport, but not antinociception, significantly decreased tumour volume and prolonged survival in tumour-transplanted mice. Naldemedine administration significantly decreased the increased expression of immune checkpoint-related genes and recovered the decreased level of toll-like receptor 4 in splenic lymphocytes in tumour-bearing mice. CONCLUSIONS: The blockade of peripheral MOR may induce an anti-tumour effect through the recovery of T-cell exhaustion and promotion of the tumour-killing system.


Neoplasms , Receptors, Opioid, mu , Analgesics, Opioid/adverse effects , Animals , Immune System/metabolism , Mice , Morphine Derivatives , Naltrexone/analogs & derivatives , Neoplasms/chemically induced , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Toll-Like Receptor 4/metabolism , beta-Arrestins/metabolism
10.
Cancer Med ; 11(24): 5001-5012, 2022 12.
Article En | MEDLINE | ID: mdl-35578571

BACKGROUND: Nerve invasion (N-inv) is an important prognostic factor in pancreatic ductal adenocarcinoma (PDAC). Elucidation of circulating N-inv stimulators could provide deeper insights and novel perspectives for PDAC therapy. The interleukin (IL)-6/gp130 axis was evaluated in this study as a candidate N-inv stimulator. METHODS: A human pancreatic cancer (PC) cell, Capan-1, was confirmed to have the stimulant activity of IL-6/gp130 axis through the evaluation of mRNA, cell surface protein and intracellular protein levels and chemotaxis and wound healing assay. The upregulation of IL-6/gp130 axis was evaluated using tumor-derived IL-6 level and intratumoral pSTAT3 expression in N-inv of murine sciatic nerves by intraneural injection of Capan-1 cell (N-inv model) and using resected pancreatic cancer tissue and clinical data from 46 PDAC patients. RESULTS: mRNA and protein expressions of IL-6 and IL-6 receptor were found in whole cell lysate and condition medium from PC cell. Cell surface protein expression of gp130 were clearly detected on PC cell. IL-6 promoted migration and chemotaxis of PC cell. Serum IL-6 and tumoral IL-6 mRNA levels in N-inv model mice were significantly higher than those in subcutaneous tumor mice (p = 0.004 and p = 0.002, respectively). Silencing of IL-6 and gp130 on PC cell and administration of an anti-IL-6 receptor antibody, tocilizumab, suppressed N-inv, compared to each control (p = 0.070, p = 0.118 and p = 0.122, respectively). In PDAC patients, the high-N-inv group showed poor prognosis (p =0.059) and elevated serum levels of IL-6 and C-reactive protein, synthesis of which is promoted by IL-6, compared to those in the low-N-inv group (p = 0.006 and p = 0.075, respectively). Tumoral gp130 expression at N-inv was higher than that in the primary pancreatic tumor (p = 0.026). CONCLUSION: Biological activity of IL-6/gp130 axis promoted N-inv in murine model and was upregulated in PDAC patients with severe N-inv. This study is the first evidence that the IL-6/gp130 axis offers a potential therapeutic target in PDAC with N-inv.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Interleukin-6/genetics , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/therapeutic use , Signal Transduction , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism , Membrane Proteins/genetics , RNA, Messenger , Cell Line, Tumor , Cell Proliferation , Pancreatic Neoplasms
11.
Mol Brain ; 15(1): 17, 2022 02 16.
Article En | MEDLINE | ID: mdl-35172858

Recent research has suggested that the mesolimbic dopamine network that mainly terminates in the nucleus accumbens may positively control the peripheral immune system. The activation of dopamine receptors in neurons in the nucleus accumbens by the release of endogenous dopamine is thus expected to contribute to efferent immune regulation. As in the stimulation of Gs-coupled dopamine D1-receptors or Gi-coupled D2-receptors by endogenous dopamine, we investigated whether specific stimulation of dopamine D1-receptor-expressing neurons or inhibition of dopamine D2-receptor-expressing neurons in the nucleus accumbens could produce anti-tumor effects and improve the immune system in transgenic mice using pharmacogenetic techniques. Repeated stimulation of D1-receptor-expressing neurons in either the medial shell, lateral shell or core regions of the nucleus accumbens significantly decreased tumor volume under a state of tumor transplantation, whereas repeated suppression of D2-receptor-expressing neurons in these areas had no effect on this event. The number of splenic CD8+ T cells was significantly increased following repeated stimulation of D1-receptor-expressing neurons in the nucleus accumbens of mice with tumor transplantation. Furthermore, this stimulation produced a significant reduction in the population of splenic CD8+ T cells that expressed immune checkpoint-related inhibitory receptors, PD-1, TIM-3 and LAG-3. These findings suggest that repeated stimulation of D1-receptor-expressing neurons (probably D1-receptor-expressing medium spiny neurons) in the nucleus accumbens suppressed tumor progression and improved the immune system by suppressing the exhaustion of splenic CD8+ T cells.


Dopamine , Nucleus Accumbens , Animals , CD8-Positive T-Lymphocytes , Mice , Mice, Transgenic , Neurons
12.
Mol Brain ; 15(1): 10, 2022 01 06.
Article En | MEDLINE | ID: mdl-34991655

Emerging evidence suggests that the mesolimbic dopaminergic network plays a role in the modulation of pain. As chronic pain conditions are associated with hypodopaminergic tone in the nucleus accumbens (NAc), we evaluated the effects of increasing signaling at dopamine D1/D2-expressing neurons in the NAc neurons in a model of neuropathic pain induced by partial ligation of sciatic nerve. Bilateral microinjection of either the selective D1-receptor (Gs-coupled) agonist Chloro-APB or the selective D2-receptor (Gi-coupled) agonist quinpirole into the NAc partially reversed nerve injury-induced thermal allodynia. Either optical stimulation of D1-receptor-expressing neurons or optical suppression of D2-receptor-expressing neurons in both the inner and outer substructures of the NAc also transiently, but significantly, restored nerve injury-induced allodynia. Under neuropathic pain-like condition, specific facilitation of terminals of D1-receptor-expressing NAc neurons projecting to the VTA revealed a feedforward-like antinociceptive circuit. Additionally, functional suppression of cholinergic interneurons that negatively and positively control the activity of D1- and D2-receptor-expressing neurons, respectively, also transiently elicited anti-allodynic effects in nerve injured animals. These findings suggest that comprehensive activation of D1-receptor-expressing neurons and integrated suppression of D2-receptor-expressing neurons in the NAc may lead to a significant relief of neuropathic pain.


Neuralgia , Nucleus Accumbens , Animals , Dopamine , Dopaminergic Neurons/metabolism , Receptors, Dopamine D2/metabolism
13.
Pharmacol Biochem Behav ; 213: 173314, 2022 02.
Article En | MEDLINE | ID: mdl-34919902

Dysfunction of the central dopamine D2-receptor-related network has been proposed to play a critical role in dopamine-related diseases, such as schizophrenia and drug dependence. Generally, the stimulation of dopamine D2-receptors on medium spiny neurons (MSN) induces several behavioral effects, such as sedation, hallucination, aversion and motivation. Furthermore, such physiological responses through dopamine D2-receptor-containing MSN (D2-MSN) may be synchronized with the activity of dopamine D1-receptor-containing MSN (D1-MSN), or both may exhibit dual agonistic/antagonistic innervation. In the present study, we characterized the discriminative stimulus effect of the selective dopamine D2-receptor agonist quinpirole to further investigate the "D1/D2-MSN" interaction using dopamine-related agents, hallucinogens and sedatives in rats. Among dopamine receptor agonists, only selective dopamine D2-receptor agonists substituted for the discriminative stimulus effects of quinpirole. Neither the δ-opioid receptor agonist SNC80 nor the adenosine A2A-receptor antagonist istradefylline, both of which may act on D2-MSNs, substituted for the discriminative stimulus effects of quinpirole. Interestingly, the dopamine D1-receptor antagonist SCH23390 and the GABAB-receptor agonist baclofen, but not hallucinogens or sedatives, substituted for the discriminative stimulus effects of quinpirole. These results suggest that stimulation of central dopamine D2-receptors exerts a distinct discriminative stimulus effect, and blockade of dopamine D1-receptors and agonistic modulation of GABAB-receptors may share the discriminative stimulus effect via the activation of central dopamine D2-receptors.


Dopamine , Receptors, Dopamine D1 , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine , Animals , Dopamine/pharmacology , Dopamine Agonists/pharmacology , Ergolines/pharmacology , Quinpirole/pharmacology , Rats , Receptors, Dopamine D2/agonists
14.
Cells ; 10(10)2021 10 04.
Article En | MEDLINE | ID: mdl-34685631

Oxytocin (OT) influences various physiological functions such as uterine contractions, maternal/social behavior, and analgesia. Opioid signaling pathways are involved in one of the analgesic mechanisms of OT. We previously showed that OT acts as a positive allosteric modulator (PAM) and enhances µ-opioid receptor (MOR) activity. In this study, which focused on other opioid receptor (OR) subtypes, we investigated whether OT influences opioid signaling pathways as a PAM for δ-OR (DOR) or κ-OR (KOR) using human embryonic kidney-293 cells expressing human DOR or KOR, respectively. The CellKeyTM results showed that OT enhanced impedance induced by endogenous/exogenous KOR agonists on KOR-expressing cells. OT did not affect DOR activity induced by endogenous/exogenous DOR agonists. OT potentiated the KOR agonist-induced Gi/o protein-mediated decrease in intracellular cAMP, but did not affect the increase in KOR internalization caused by the KOR agonists dynorphin A and (-)-U-50488 hydrochloride (U50488). OT did not bind to KOR orthosteric binding sites and did not affect the binding affinities of dynorphin A and U50488 for KOR. These results suggest that OT is a PAM of KOR and MOR and enhances G protein signaling without affecting ß-arrestin signaling. Thus, OT has potential as a specific signaling-biased PAM of KOR.


GTP-Binding Proteins/metabolism , Oxytocin/pharmacology , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/metabolism , Signal Transduction , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Allosteric Regulation/drug effects , Animals , Binding Sites , CHO Cells , Cricetulus , Cyclic AMP/metabolism , Diprenorphine/pharmacology , Dynorphins/pharmacology , Electric Impedance , Endocytosis/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Receptors, Opioid, delta/agonists , Receptors, Opioid, kappa/agonists , Signal Transduction/drug effects
15.
Mol Brain ; 14(1): 146, 2021 09 20.
Article En | MEDLINE | ID: mdl-34544461

Chronic postsurgical pain (CPSP) is a serious problem. We developed a mouse model of CPSP induced by electrocautery and examined the mechanism of CPSP. In this mouse model, while both incision and electrocautery each produced acute allodynia, persistent allodynia was only observed after electrocautery. Under these conditions, we found that the mRNA levels of Small proline rich protein 1A (Sprr1a) and Annexin A10 (Anxa10), which are the key modulators of neuropathic pain, in the spinal cord were more potently and persistently increased by electrocautery than by incision. Furthermore, these genes were overexpressed almost exclusively in chronic postsurgical pain-activated neurons. This event was associated with decreased levels of tri-methylated histone H3 at Lys27 and increased levels of acetylated histone H3 at Lys27 at their promoter regions. On the other hand, persistent allodynia and overexpression of Sprr1a and Anxa10 after electrocautery were dramatically suppressed by systemic administration of GSK-J4, which is a selective H3K27 demethylase inhibitor. These results suggest that the effects of electrocautery contribute to CPSP along with synaptic plasticity and epigenetic modification.


Annexins/biosynthesis , Cornified Envelope Proline-Rich Proteins/biosynthesis , Electrocoagulation/adverse effects , Histone Code , Hyperalgesia/etiology , Nerve Tissue Proteins/biosynthesis , Neuralgia/genetics , Neurons/physiology , Pain, Postoperative/genetics , Spinal Cord/physiopathology , Animals , Annexins/genetics , Benzazepines/pharmacology , Benzazepines/therapeutic use , Cornified Envelope Proline-Rich Proteins/genetics , Disease Models, Animal , Female , Foot Injuries/physiopathology , Gene Expression Regulation , Gene Knock-In Techniques , Genes, Reporter , Genes, fos , Histones/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Lysine/metabolism , Male , Methylation , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Neuralgia/drug therapy , Neuralgia/physiopathology , Neurons/drug effects , Pain, Postoperative/drug therapy , Pain, Postoperative/physiopathology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology
16.
Biochem Biophys Res Commun ; 541: 22-29, 2021 02 19.
Article En | MEDLINE | ID: mdl-33461064

Hypothalamic aging is considered to be critical for systemic aging, and the accumulation of "exhausted glial cells" in the hypothalamus may contribute to brain dysfunction. In this study, we used normal aging mice and investigated aging-specific transcriptional identities of microglia and astrocytes in the hypothalamus. We confirmed that normal aging promoted anxiety, induced impairment of motor coordination and reduced physical strength of muscle in mice. To investigate the senescence of hypothalamic glial cells, we isolated CD11b-positive microglia and ACSA-2-positive astrocytes from the hypothalamus of aged mice using magnetic-activated cell sorting (MACS). The mRNA level of p16INK4A was dramatically increased in the hypothalamic microglia of aged mice compared to young mice. Furthermore, the expression of programmed cell death 1 (PD-1) as well as A1-like astrocyte mediators in the hypothalamic microglia was dramatically induced by aging, indicating that normal aging may produce PD-1-enriched "exhausted microglia" in the hypothalamus. Furthermore, neuroinflammatory A1-like reactive astrocytes with a p16INK4A-positive senescent state were predominantly detected in the hypothalamus of aged mice. Exhausted microglia were also detected in the prefrontal cortex of aged mice, whereas astrocytic neuroinflammation was milder than that observed in the hypothalamus, even with p16INK4A-positive senescence. These results suggest that the production of PD-1-enriched exhausted and senescent microglia and neuroinflammatory A1-like reactive astrocytes in the hypothalamus may partly contribute to aging-related emotional and physical dyscoordination.


Aging/metabolism , Astrocytes/metabolism , Cellular Senescence , Hypothalamus/metabolism , Microglia/metabolism , Programmed Cell Death 1 Receptor/metabolism , Aging/pathology , Animals , Astrocytes/pathology , CD11b Antigen/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Emotions , Hypothalamus/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Maze Learning , Mice , Mice, Inbred C57BL , Microglia/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Psychomotor Performance , Rotarod Performance Test
17.
Biochem Biophys Res Commun ; 534: 624-631, 2021 01 01.
Article En | MEDLINE | ID: mdl-33220930

In the present study, we demonstrated that there is a direct relationship between scratching behaviors induced by itch and functional changes in the brain reward system. Using a conditional place preference test, the rewarding effect was clearly evoked by scratching under both acute and chronic itch stimuli. The induction of ΔFosB, a member of the Fos family of transcription factors, was observed in dopamine transporter (DAT)-positive dopamine neurons in the ventral tegmental area (VTA) of mice suffering from a chronic itch sensation. Based on a cellular analysis of scratching-activated neurons, these neurons highly expressed tyrosine hydroxylase (TH) and DAT genes in the VTA. Furthermore, in an in vivo microdialysis study, the levels of extracellular dopamine in the nucleus accumbens (NAcc) were significantly increased by transient scratching behaviors. To specifically suppress the mesolimbic dopaminergic pathway using pharmacogenetics, we used the TH-cre/hM4Di mice. Pharmacogenetic suppression of mesolimbic dopaminergic neurons significantly decreased scratching behaviors. Under the itch condition with scratching behaviors restricted by an Elizabethan collar, the induction of ΔFosB was found mostly in corticotropin-releasing hormone (CRH)-containing neurons of the hypothalamic paraventricular nucleus (PVN). These findings suggest that repetitive abnormal scratching behaviors under acute and chronic itch stimuli may activate mesolimbic dopamine neurons along with pleasant emotions, while the restriction of such scratching behaviors may initially induce the activation of PVN-CRH neurons associated with stress.


Pruritus/physiopathology , Pruritus/psychology , Reward , Ventral Tegmental Area/physiopathology , Acute Disease , Animals , Behavior, Animal/physiology , Chronic Disease , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Gene Expression , Histamine/administration & dosage , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nucleus Accumbens/physiopathology , Pharmacogenomic Testing , Picryl Chloride/administration & dosage , Pruritus/genetics , Tyrosine 3-Monooxygenase/genetics
18.
Biochem Biophys Res Commun ; 534: 988-994, 2021 01 01.
Article En | MEDLINE | ID: mdl-33139013

TRV130 (oliceridine), a G protein-biased ligand for µ-opioid receptor, has recently been synthesized. It is considered to have strong antinociceptive effects and only minor adverse effects. However, whether or not oliceridine actually exhibits an ideal pharmacological profile as an analgesic has not yet been fully clarified in animal studies. This study examined the pharmacological profile of oliceridine in cells and animals. Oliceridine (10 µM) did not produce any µ-opioid receptor internalization in cells even though it increased impedance, which reflects the activation of Gi protein using the CellKey™ system, and inhibited the formation of cAMP. In mice, oliceridine (0.3-10 mg/kg) produced a dose-dependent antinociceptive effect with a rapid-onset and short-duration action in the hot-plate test, as well as antihyperalgesia after sciatic nerve ligation without the development of antinociceptive tolerance using the thermal hyperalgesia test. On the other hand, oliceridine inhibited gastrointestinal transit. Furthermore, oliceridine produced rapid-onset hyperlocomotion at antinociceptive doses; sensitization developed in mice and an emetic effect was observed in ferrets. These results indicate that, although oliceridine may produce dopamine-related behaviors even through selective stimulation of the G-protein-biased µ-opioid receptor pathway, it still offers advantages for breakthrough pain without antinociceptive tolerance with adequate doses.


Analgesics/therapeutic use , GTP-Binding Proteins/metabolism , Neuralgia/drug therapy , Receptors, Opioid, mu/metabolism , Spiro Compounds/therapeutic use , Thiophenes/therapeutic use , Analgesics/pharmacology , Animals , Cell Line , Humans , Male , Mice , Mice, Inbred ICR , Neuralgia/metabolism , Receptors, Opioid, mu/agonists , Signal Transduction/drug effects , Spiro Compounds/pharmacology , Thiophenes/pharmacology , Time Factors
19.
Curr Top Med Chem ; 20(31): 2822-2829, 2020.
Article En | MEDLINE | ID: mdl-33115393

Opioid agonists elicit their analgesic action mainly via µ opioid receptors; however, their use is limited because of adverse events including constipation and respiratory depression. It has been shown that analgesic action is transduced by the G protein-mediated pathway whereas adverse events are by the ß-arrestin-mediated pathway through µ opioid receptor signaling. The first new-generation opioid TRV130, which preferentially activates G protein- but not ß-arrestin-mediated signal, was constructed and developed to reduce adverse events. TRV130 and other G protein-biased compounds tend to elicit desirable analgesic action with less adverse effects. In clinical trials, the intravenous TRV130 (oliceridine) was evaluated in Phase I, II and III clinical studies. Here we review the discovery and synthesis of TRV130, its main action as a novel analgesic having less adverse events, its up-to-date status in clinical trials, and additional concerns about TRV130 as demonstrated in the literature.


Analgesics, Opioid/pharmacology , GTP-Binding Proteins/antagonists & inhibitors , Spiro Compounds/pharmacology , Thiophenes/pharmacology , Analgesics, Opioid/adverse effects , Analgesics, Opioid/chemistry , GTP-Binding Proteins/metabolism , Humans , Signal Transduction/drug effects , Spiro Compounds/adverse effects , Spiro Compounds/chemistry , Thiophenes/adverse effects , Thiophenes/chemistry
20.
Neurochem Int ; 129: 104494, 2019 10.
Article En | MEDLINE | ID: mdl-31233839

The mesolimbic dopaminergic signaling, such as that originating from the ventral tegmental area (VTA) neurons in the medial part of the nucleus accumbens (mNAc), plays a role in complex sensory and affective components of pain. To date, we have demonstrated that optogenetic sensory nerve stimulation rapidly alters the dopamine (DA) content within the mNAc. However, the physiological role and biochemical processes underlying such rapid and regional dynamics of DA remain unclear. In this study, using imaging mass spectrometry (IMS), we observed that sensitized pain stimulation by optogenetic sensory nerve activation increased DA and 3-Methoxytyramine (3-MT; a post-synaptic metabolite obtained following DA degradation) in the mNAc of the experimental mice. To delineate the mechanism associated with elevation of DA and 3-MT, the de novo synthesized DA in the VTA/substantia nigra terminal areas was evaluated using IMS by visualizing the metabolic conversion of stable isotope-labeled tyrosine (13C15N-Tyr) to DA. Our approach revealed that at steady state, the de novo synthesized DA occupied >10% of the non-labeled DA pool in the NAc within 1.5 h of isotope-labeled Tyr administration, despite no significant increase following pain stimulation. These results suggested that sensitized pain triggered an increase in the release and postsynaptic intake of DA in the mNAc, followed by its degradation, and likely delayed de novo DA synthesis. In conclusion, we demonstrated that short, peripheral nerve excitation with mechanical stimulation accelerates the mNAc-specific DA signaling and metabolism which might be associated with the development of mechanical allodynia.


Dopamine/metabolism , Hyperalgesia/physiopathology , Nucleus Accumbens/metabolism , Optogenetics/adverse effects , Sciatic Nerve/physiopathology , Sensory Receptor Cells/radiation effects , Ventral Tegmental Area/metabolism , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/analogs & derivatives , Genes, Reporter , Hyperalgesia/etiology , Hyperalgesia/metabolism , Male , Mice , Mice, Inbred C57BL , Neural Pathways/metabolism , Pain Threshold/radiation effects , Sciatic Nerve/radiation effects , Sensory Receptor Cells/metabolism , Touch
...