Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 116(2): 456-461, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36895198

RESUMEN

The Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) is a destructive pest of the cultivated potato, Solanum tuberosum. Members of this species are well-suited to agricultural habitats because of a suite of physiological adaptations and their ability to evolve resistance to multiple insecticides. Recently, a novel double-stranded RNA (dsRNA) insecticide (Calantha, active ingredient ledprona) has been demonstrated as an effective tool to manage Colorado potato beetle populations through RNA interference (RNAi). Previous studies have demonstrated the lethality of the high doses of ledprona but had not assessed possible effects of low doses that may happen due to product degradation in the environment, incomplete spray coverage, and foliage growth. Exposure of fourth instar larvae to low concentrations of ledprona interfered with their pupation. Exposure of adults significantly reduced their mobility after seven days, as well as their fertility. Reproductive effects were stronger in females, especially when exposed before reaching sexual maturity. The observed effects of low doses of ledprona may aid in the overall management of Colorado potato beetles by reducing the size of resident populations, inhibiting beetle movement within and between fields, and reducing the population growth rate.


Asunto(s)
Escarabajos , Insecticidas , Solanum tuberosum , Femenino , Animales , Escarabajos/fisiología , Solanum tuberosum/genética , Agentes de Control Biológico/farmacología , ARN Bicatenario , Larva , Insecticidas/farmacología
2.
Pest Manag Sci ; 78(9): 3836-3848, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35166021

RESUMEN

BACKGROUND: The Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) is one of the most notorious pests of the potato, Solanum tuberosum. Potato beetles are capable of developing resistance to various insecticides in relatively few generations. Novel and effective means of controlling Colorado potato beetle populations are constantly required to protect potato crops and prevent loss of yield. The knockdown of gene function through ribonucleic acid interference has been demonstrated in Colorado potato beetles, suggesting the use of this technology as a means of beetle management. A novel double-stranded RNA-based insecticide with the active ingredient, ledprona, has been tested in variable dose laboratory bioassays, followed by field studies. RESULTS: Exposure to ledprona resulted in both increased beetle mortality and decreased foliage consumption in all four instars and adult beetles. Effects decreased from earlier to later life stages. No ovicidal activity was detected. Onset of mortality was slower compared with existing chemical insecticides. Nevertheless, field applications of formulated ledprona to potato plots resulted in their protection comparable with that provided by spinosad and chlorantraniliprole. CONCLUSION: Based on the results of this study, formulated ledprona has attributes to become a useful tool in controlling Colorado potato beetle populations that is likely to be a good fit in integrated pest management protocols. © 2022 Society of Chemical Industry.


Asunto(s)
Escarabajos , Insecticidas , Solanum tuberosum , Animales , Insecticidas/farmacología , Control de Plagas , ARN Bicatenario/farmacología , Solanum tuberosum/genética
3.
Insects ; 13(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35055900

RESUMEN

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1-2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.

5.
Front Plant Sci ; 12: 728652, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887882

RESUMEN

Colorado potato beetle (CPB, Leptinotarsa decemlineata) is a major pest of potato and other solanaceous vegetables in the Northern Hemisphere. The insect feeds on leaves and can completely defoliate crops. Because of the repeated use of single insecticide classes without rotating active ingredients, many chemicals are no longer effective in controlling CPB. Ledprona is a sprayable double-stranded RNA biopesticide with a new mode of action that triggers the RNA interference pathway. Laboratory assays with second instar larvae fed Ledprona showed a dose-response where 25×10-6g/L of dsPSMB5 caused 90% mortality after 6days of initial exposure. We also showed that exposure to Ledprona for 6h caused larval mortality and decreased target messenger RNA (mRNA) expression. Decrease in PSMB5 protein levels was observed after 48h of larval exposure to Ledprona. Both PSMB5 mRNA and protein levels did not recover over time. Ledprona efficacy was demonstrated in a whole plant greenhouse trial and performed similarly to spinosad. Ledprona, currently pending registration at EPA, represents a new biopesticide class integrated pest management and insecticide resistance management programs directed against CPB.

6.
Genomics Proteomics Bioinformatics ; 19(5): 800-814, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33607298

RESUMEN

Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation. More specifically, the involvement of small RNAs (sRNAs), especially microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate various biological processes, has not been examined, and the datasets of putative sRNA sequences have not previously been generated for WCR. To achieve a comprehensive collection of sRNA transcriptomes in WCR, we constructed, sequenced, and analyzed sRNA libraries from different life stages of WCR and northern corn rootworm (NCR), and identified 101 conserved precursor miRNAs (pre-miRNAs) in WCR and other Arthropoda. We also identified 277 corn rootworm specific pre-miRNAs. Systematic analyses of sRNA populations in WCR revealed that its sRNA transcriptome, which includes PIWI-interacting RNAs (piRNAs) and miRNAs, undergoes a dynamic change throughout insect development. Phylogenetic analysis of miRNA datasets from model species reveals that a large pool of species-specific miRNAs exists in corn rootworm; these are potentially evolutionarily transient. Comparisons of WCR miRNA clusters to other insect species highlight conserved miRNA-regulated processes that are common to insects. Parallel Analysis of RNA Ends (PARE) also uncovered potential miRNA-guided cleavage sites in WCR. Overall, this study provides a new resource for studying the sRNA transcriptome and miRNA-mediated gene regulation in WCR and other Coleopteran insects.


Asunto(s)
Escarabajos , MicroARNs , Animales , Escarabajos/genética , MicroARNs/genética , Filogenia , Transcriptoma , Zea mays/genética
7.
Plant Biotechnol J ; 18(9): 1925-1932, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32012433

RESUMEN

The cotton bollworm, Helicoverpa armigera, is a major insect pest for a wide range of agricultural crops. It causes significant yield loss through feeding damage and by increasing the crop's vulnerability to bacterial and fungal infections. Although expression of Bacillus thuringiensis (Bt) toxins in transgenic crops has been very successful in protecting against insect pests, including H. armigera, field-evolved resistance has occurred in multiple species. To manage resistant populations, new protection strategies must be continuously developed. Trans-kingdom RNA interference (TK-RNAi) is a promising method for controlling herbivorous pests. TK-RNAi is based on delivering dsRNA or hairpin RNA containing essential insect gene sequences to the feeding insect. The ingested molecules are processed by the insect's RNAi machinery and guide it to silence the target genes. Recently, TK-RNAi delivery has been enhanced by expressing the ds- or hpRNAs in the chloroplast. This compartmentalizes the duplexed RNA away from the plant's RNAi machinery, ensuring that it is delivered in an unprocessed form to the insect. Here, we report another alternative approach for delivering precursor anti-insect RNA in plants. Insect pre-microRNA (pre-miR) transcripts were modified to contain artificial microRNAs (amiRs), targeting insect genes, and expressed in transgenic Nicotiana benthamiana plants. These modified pre-miRs remained largely unprocessed in the plants, and H. armigera feeding on leaves from these plants had increased mortality, developmental abnormalities and delayed growth rates. This shows that plant-expressed insect pre-amiRs (plin-amiRs) are a new strategy of protecting plants against herbivorous insects.


Asunto(s)
Bacillus thuringiensis , MicroARNs , Mariposas Nocturnas , Animales , Insectos , MicroARNs/genética , Mariposas Nocturnas/genética , Plantas Modificadas Genéticamente/genética , Interferencia de ARN
8.
Pest Manag Sci ; 76(4): 1500-1512, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31677217

RESUMEN

BACKGROUND: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm (WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. RESULTS: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0 maize events carrying rootworm Sec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25 in diet bioassays. CONCLUSION: We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25 , suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. © 2019 Society of Chemical Industry.


Asunto(s)
Zea mays , Animales , Escarabajos , Femenino , Larva , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Bicatenario
9.
Toxins (Basel) ; 11(6)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163681

RESUMEN

Vegetative insecticidal proteins (Vips) from Bacillus thuringiensis (Bt) are unique from crystal (Cry) proteins found in Bt parasporal inclusions as they are secreted during the bacterial vegetative growth phase and bind unique receptors to exert their insecticidal effects. We previously demonstrated that large modifications of the Vip3 C-terminus could redirect insecticidal spectrum but results in an unstable protein with no lethal activity. In the present work, we have generated a new Vip3 protein, Vip3Ab1-740, via modest modification of the Vip3Ab1 C-terminus. Vip3Ab1-740 is readily processed by midgut fluid enzymes and has lethal activity towards Spodoptera eridania, which is not observed with the Vip3Ab1 parent protein. Importantly, Vip3Ab1-740 does retain the lethal activity of Vip3Ab1 against other important lepidopteran pests. Furthermore, transgenic plants expressing Vip3Ab1-740 are protected against S. eridania, Spodoptera frugiperda, Helicoverpa zea, and Pseudoplusia includens. Thus, these studies demonstrate successful engineering of Vip3 proteins at the C-terminus to broaden insecticidal spectrum, which can be employed for functional expression in planta.


Asunto(s)
Arabidopsis/parasitología , Proteínas Bacterianas/genética , Control Biológico de Vectores , Plantas Modificadas Genéticamente/parasitología , Spodoptera/fisiología , Animales , Arabidopsis/genética , Insecticidas
10.
Insect Biochem Mol Biol ; 104: 20-29, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30243801

RESUMEN

Western corn rootworm, Diabrotica virgifera virgifera, is the major agronomically important pest of maize in the US Corn Belt. To augment the repertoire of the available dsRNA-based traits that control rootworm, we explored a potentially haplolethal gene target, wings up A (wupA), which encodes Troponin I. Troponin I, a component of the Troponin-Tropomyosin complex, is an inhibitory protein involved in muscle contraction. In situ hybridization showed that feeding on wupA-targeted dsRNAs caused systemic transcript knockdown in D. v. virgifera larvae. The knockdown of wupA transcript, and by extension Troponin I protein, led to deterioration of the striated banding pattern in larval body muscle and decreased muscle integrity. Additionally, the loss of function of the circular muscles surrounding the alimentary system led to significant accumulation of food material in the hind gut, which is consistent with a loss of peristaltic motion of the alimentary canal. In this study, we demonstrate that wupA dsRNA is lethal in D. v. virgifera larvae when fed via artificial diet, with growth inhibition of up to 50% within two days of application. Further, wupA hairpins can be stably expressed and detected in maize. Maize expressing wupA hairpins exhibit robust root protection in greenhouse bioassays, with several maize transgene integration events showing root protection equivalent to commercial insecticidal protein-expressing maize.


Asunto(s)
Escarabajos , Raíces de Plantas/parasitología , Interferencia de ARN , Troponina I , Zea mays/parasitología , Animales , Escarabajos/genética , Escarabajos/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/genética , Larva/metabolismo , Troponina I/antagonistas & inhibidores , Troponina I/genética , Troponina I/metabolismo
11.
Pestic Biochem Physiol ; 150: 66-70, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30195389

RESUMEN

RNA interference (RNAi) has proven effective for controlling pest insects such as western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Previous studies have shown that WCR adults display a robust RNAi response to orally-administered double-stranded RNA (dsRNA). However, it is unclear how quickly the response occurs after ingestion or how long RNAi effect lasts after WCR stop ingesting diet containing dsRNA. In the current study, WCR adult females were provided with diet treated with dsRNAs of Laccase 2 and Argonaute 2, two nonessential genes, for 8 days. RNAi response in WCR females commenced as early as 10 h after exposure to dsRNA and lasted up to 40 days after exposure to dsRNA ended. Our results show that dsRNA-mediated RNAi response in WCR females is rapid and long-lasting. These findings suggest that even a short-term ingestion of transgenic plants expressing dsRNA by WCR may have a sustained impact on this insect.


Asunto(s)
Escarabajos/genética , Interferencia de ARN , ARN Bicatenario/administración & dosificación , Animales , Proteínas Argonautas/genética , Femenino , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Proteínas de Insectos/metabolismo , Lacasa/genética , Control Biológico de Vectores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
PLoS One ; 13(8): e0201849, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30092086

RESUMEN

The cellular uptake of dsRNA after dietary exposure is critical for RNAi efficiency; however, the mechanism of its uptake in many insects remains to be understood. In this study, we evaluated the roles of the endocytic pathway genes Clathrin heavy chain (Chc), Clathrin adaptor protein AP50, ADP ribosylation factor-like 1 (Arf72A), Vacuolar H+ ATPase 16 kDa subunit (Vha16), and small GTPase Rab7 and putative sid-1-like genes (silA and silC) in RNAi response in western corn rootworm (WCR) using a two-stage dsRNA exposure bioassay. Silencing of Chc, Vha16, and AP50 led to a significant decrease in the effects of laccase2 dsRNA reporter, indicating that these genes are involved in RNAi response. However, the knockdown of either Arf72A or Rab7 did not suppress the response to laccase2 dsRNA. The silencing of the silC gene did not lead to a significant reduction in mortality or increase in the expression of V-ATPase A reporter. While the silencing of the silA gene significantly decreased insect mortality, significant changes in V-ATPase A expression were not detected. These results suggest that clathrin-dependent endocytosis is a biological mechanism that plays an important role during RNAi response in WCR adults. The fact that no definitive support for the roles of silA or silC in RNAi response was obtained support the idea that RNAi response varies greatly in different insect species, demanding additional studies focused on elucidating their involvement in this mechanism.


Asunto(s)
Clatrina/metabolismo , Escarabajos/metabolismo , Endocitosis/fisiología , Proteínas de Insectos/metabolismo , Interferencia de ARN/fisiología , Animales , Escarabajos/genética , Endocitosis/genética , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/genética , Control Biológico de Vectores , ARN Bicatenario/metabolismo , Transcriptoma , Zea mays
13.
Pestic Biochem Physiol ; 148: 103-110, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29891360

RESUMEN

The use of transgenic crops that induce silencing of essential genes using double-stranded RNA (dsRNA) through RNA interference (RNAi) in western corn rootworm, Diabrotica virgifera virgifera, is likely to be an important component of new technologies for the control of this important corn pest. Previous studies have demonstrated that the dsRNA response in D. v. virgifera depends on the presence of RNAi pathway genes including Dicer-2 and Argonaute 2, and that downregulation of these genes limits the lethality of environmental dsRNA. A potential resistance mechanism to lethal dsRNA may involve loss of function of RNAi pathway genes. Howver, the potential for resistance to evolve may depend on whether these pathway genes have essential functions such that the loss of function of core proteins in the RNAi pathway will have fitness costs in D. v. virgifera. Fitness costs associated with potential resistance mechanisms have a central role in determining how resistance can evolve to RNAi technologies in western corn rootworm. We evaluated the effect of dsRNA and microRNA pathway gene knockdown on the development of D. v. virgifera larvae through short-term and long-term exposures to dsRNA for Dicer and Argonaute genes. Downregulation of Argonaute 2, Dicer-2, Dicer-1 did not significantly affect larval survivorship or development through short and long-term exposure to dsRNA. However, downregulation of Argonaute 1 reduced larval survivorship and delayed development. The implications of these results as they relate to D. v. virgifera resistance to lethal dsRNA are discussed.


Asunto(s)
Proteínas Argonautas/genética , Escarabajos/genética , Técnicas de Silenciamiento del Gen , Genes de Insecto , ARN Helicasas/genética , Interferencia de ARN , ARN Bicatenario/genética , Ribonucleasa III/genética , Animales , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Productos Agrícolas/genética , Productos Agrícolas/parasitología , Regulación hacia Abajo , Larva/genética , Larva/crecimiento & desarrollo , MicroARNs/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología
14.
Sci Rep ; 8(1): 2061, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391456

RESUMEN

RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.


Asunto(s)
Silenciador del Gen , Ingeniería Genética/métodos , MicroARNs/genética , Control Biológico de Vectores/métodos , Transgenes , Tribolium/genética , Animales , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Tribolium/patogenicidad , Zea mays/genética , Zea mays/parasitología
15.
Pest Manag Sci ; 74(8): 1751-1758, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29377554

RESUMEN

RNA interference (RNAi) was discovered almost 20 years ago and has been exploited worldwide to silence genes in plants and animals. A decade later, it was found that transforming plants with an RNAi construct targeting an insect gene could protect the plant against feeding by that insect. Production of double-stranded RNA (dsRNA) in a plant to affect the viability of a herbivorous animal is termed trans-kingdom RNAi (TK-RNAi). Since this pioneering work, there have been many further examples of successful TK-RNAi, but also reports of failed attempts and unrepeatable experiments. Recently, three laboratories have shown that producing dsRNA in a plant's chloroplast, rather than in its cellular cytoplasm, is a very effective way of delivering TK-RNAi. Our review examines this potentially game-changing approach and compares it with other transgenic insect-proofing schemes. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Cloroplastos/fisiología , Genes de Insecto/genética , Control de Insectos/métodos , Plantas Modificadas Genéticamente/fisiología , Interferencia de ARN , ARN Bicatenario/genética , Animales
16.
Insect Sci ; 25(1): 45-56, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27520841

RESUMEN

Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is highly sensitive to orally delivered double-stranded RNA (dsRNA). RNAi in WCR is systemic and spreads throughout the insect body. This raises the question whether transitive RNAi is a mechanism that functions in WCR to amplify the RNAi response via production of secondary siRNA. Secondary siRNA production is achieved through RNA-dependent RNA polymerase (RdRP) activity in other eukaryotic organisms, but RdRP has not been identified in WCR and any other insects. This study visualized the spread of the RNAi-mediated knockdown of Dv v-ATPase C mRNA throughout the WCR gut and other tissues using high-sensitivity branched DNA in situ hybridization. Furthermore, we did not detect either secondary siRNA production or transitive RNAi in WCR through siRNA sequence profile analysis. Nucleotide mismatched sequences introduced into either the sense or antisense strand of v-ATPase C dsRNAs were maintained in siRNAs derived from WCR fed with the mismatched dsRNAs in a strand specific manner. The distribution of all siRNAs was restricted to within the original target sequence regions, which may indicate the lack of new dsRNA synthesis leading to production of secondary siRNA. Thus, the systemic spread of RNAi in WCR may be derived from the original dsRNA molecules taken up from the gut lumen. These results indicate that the initial dsRNA dose is important for a lethal systemic RNAi response in WCR and have implications in developing effective dsRNA traits to control WCR and in resistance management to prolong the durability of RNAi trait technology.


Asunto(s)
Escarabajos , Interferencia de ARN , Animales , Larva
17.
PLoS One ; 12(12): e0190208, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29267401

RESUMEN

RNA interference (RNAi) based approaches can potentially be used to control insect pests. These approaches may depend on the usage of microRNA (miRNA) or double stranded RNA (dsRNA) mediated gene knockdown, which likely involves proteins that regulate these pathways, such as Argonaute 1 (Ago1), Argonaute 2 (Ago2), Dicer 1 (Dcr1), Dicer 2 (Dcr2), and Drosha in insects. We previously performed functional characterization of Ago2 and Dcr2 of western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and observed that knockdown of Ago2 and Dcr2 ameliorated the lethal effect induced by the dsRNA-mediated knockdown of an essential gene in WCR, thereby confirming the involvement of Ago2 and Dcr2 in the dsRNA pathway. In the current study, we identified and characterized additional members of the Argonaute and Dicer gene families, namely Ago1, Ago3, Aubergine, and Dcr1, in a previously developed WCR transcriptome. We also identified a Drosha homolog in the same transcriptome. We evaluated the impacts on WCR adult fitness associated with the dsRNA-mediated knockdown of Ago1, Ago2, Dcr1, Dcr2, and Drosha genes. Among these putative RNAi pathway genes, only the knockdown of Ago1 incurred significant fitness costs such as reduced survival and oviposition rate, as well as decreased egg viability. The present study, to our knowledge, represents the first report showing that Ago1 is critical to the survival of insect adults. Our findings suggest that Ago1 plays an essential role in broader life stages of an insect than previously thought. Importantly, since fitness costs were not observed, downregulation or loss of function of RNAi pathway genes such as Ago2 or Dcr2 may confer resistance to pest control measures that rely on the normal functions of these genes. However, the precise roles of these genes under field conditions (i.e., in the presence of possible viral pathogens) requires further investigation.


Asunto(s)
Escarabajos/genética , Técnicas de Silenciamiento del Gen , Interferencia de ARN , Zea mays/parasitología , Animales , Escarabajos/fisiología , Interacciones Huésped-Parásitos , Filogenia
18.
Sci Rep ; 7(1): 11112, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894249

RESUMEN

In this work, we characterized 2 novel insecticidal proteins; Vip3Ab1 and Vip3Bc1. These proteins display unique insecticidal spectra and have differential rates of processing by lepidopteran digestive enzymes. Furthermore, we have found that both proteins exist as tetramers in their native state before and after proteolysis. In addition, we expressed truncated forms and protein chimeras to gain a deeper understanding of toxin specificity and stability. Our study confirms a role for the C-terminal 65 kDa domain in directing insect specificity. Importantly, these data also indicate a specific interaction between the 20 kDa amino terminus and 65 kDa carboxy terminus, after proteolytic processing. We demonstrate the C-terminal 65 kDa to be labile in native proteolytic conditions in absence of the 20 kDa N-terminus. Thus, the 20 kDa fragment functions to provide stability to the C-terminal domain, which is necessary for lethal toxicity against lepidopteran insects.


Asunto(s)
Proteínas Bacterianas/genética , Lepidópteros/genética , Proteínas Recombinantes , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Cromatografía en Gel , Lepidópteros/efectos de los fármacos , Lepidópteros/metabolismo , Dominios Proteicos , Proteolisis
19.
Sci Rep ; 7(1): 10877, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883440

RESUMEN

Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm (Spodoptera frugiperda) is a devastating pest of corn in the Western Hemisphere initially controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein (event TC1507). However field-evolved resistance to TC1507 was observed in Puerto Rico in 2007 and has subsequently been reported in a number of locations in North and South America. Early studies on Puerto Rico fall armyworm populations found that the resistance phenotype was associated with reduced expression of alkaline phosphatase. However, in this work we show that field-evolved resistance to Cry1Fa Bt corn in Puerto Rico is closely linked to a mutation in an ATP Binding Cassette subfamily C2 (ABCC2) gene that functions as a Cry1Fa receptor in susceptible insects. Furthermore, we report a DNA-based genotyping test used to demonstrate the presence of the resistant (SfABCC2mut) allele in Puerto Rico populations in 2007, coincident with the first reports of damage to TC1507 corn. These DNA-based field screening data provide strong evidence that resistance to TC1507 in fall armyworm maps to the SfABCC2 gene and provides a useful molecular marker for detecting the SfABCC2mut allele in resistant fall armyworm.


Asunto(s)
Proteínas Bacterianas/farmacología , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Resistencia a los Insecticidas , Plantas Modificadas Genéticamente/parasitología , Receptores de Superficie Celular/genética , Spodoptera/efectos de los fármacos , Spodoptera/crecimiento & desarrollo , Zea mays/parasitología , Animales , Toxinas de Bacillus thuringiensis , Genotipo , Técnicas de Genotipaje , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , América del Norte , Receptores de Superficie Celular/metabolismo , América del Sur , Spodoptera/genética
20.
J Biol Chem ; 292(32): 13122-13132, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28623231

RESUMEN

Cry6Aa1 is a Bacillus thuringiensis (Bt) toxin active against nematodes and corn rootworm insects. Its 3D molecular structure, which has been recently elucidated, is unique among those known for other Bt toxins. Typical three-domain Bt toxins permeabilize receptor-free planar lipid bilayers (PLBs) by forming pores at doses in the 1-50 µg/ml range. Solubilization and proteolytic activation are necessary steps for PLB permeabilization. In contrast to other Bt toxins, Cry6Aa1 formed pores in receptor-free bilayers at doses as low as 200 pg/ml in a wide range of pH (5.5-9.5) and without the need of protease treatment. When Cry6Aa1 was preincubated with Western corn rootworm (WCRW) midgut juice or trypsin, 100 fg/ml of the toxin was sufficient to form pores in PLBs. The overall biophysical properties of the pores were similar for all three forms of the toxin (native, midgut juice- and trypsin-treated), with conductances ranging from 28 to 689 pS, except for their ionic selectivity, which was slightly cationic for the native and midgut juice-treated Cry6Aa1, whereas dual selectivity (to cations or anions) was observed for the pores formed by the trypsin-treated toxin. Enrichment of PLBs with WCRW midgut brush-border membrane material resulted in a 2000-fold reduction of the amount of native Cry6Aa1 required to form pores and affected the biophysical properties of both the native and trypsin-treated forms of the toxin. These results indicate that, although Cry6Aa1 forms pores, the molecular determinants of its mode of action are significantly different from those reported for other Bt toxins.


Asunto(s)
Antinematodos/farmacología , Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/farmacología , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Insecticidas/farmacología , Membrana Dobles de Lípidos/química , Activación Metabólica , Animales , Antinematodos/química , Antinematodos/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escarabajos/efectos de los fármacos , Escarabajos/enzimología , Escarabajos/crecimiento & desarrollo , Digestión , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Insectos/metabolismo , Insecticidas/química , Insecticidas/metabolismo , Cinética , Larva/efectos de los fármacos , Larva/enzimología , Larva/crecimiento & desarrollo , Fusión de Membrana/efectos de los fármacos , Microvellosidades/química , Microvellosidades/enzimología , Péptido Hidrolasas/metabolismo , Porosidad/efectos de los fármacos , Proteolisis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...