Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Nat Neurosci ; 27(6): 1051-1063, 2024 Jun.
Article En | MEDLINE | ID: mdl-38594596

RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes.


Brain , Single-Cell Analysis , Animals , Humans , Mice , Brain/metabolism , Brain/growth & development , Single-Cell Analysis/methods , RNA Splicing/genetics , RNA Isoforms/genetics , Alternative Splicing/genetics , Male , Mice, Inbred C57BL
2.
Cancers (Basel) ; 16(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38339281

It is well-known that cancers of the same histology type can respond differently to a treatment. Thus, computational drug response prediction is of paramount importance for both preclinical drug screening studies and clinical treatment design. To build drug response prediction models, treatment response data need to be generated through screening experiments and used as input to train the prediction models. In this study, we investigate various active learning strategies of selecting experiments to generate response data for the purposes of (1) improving the performance of drug response prediction models built on the data and (2) identifying effective treatments. Here, we focus on constructing drug-specific response prediction models for cancer cell lines. Various approaches have been designed and applied to select cell lines for screening, including a random, greedy, uncertainty, diversity, combination of greedy and uncertainty, sampling-based hybrid, and iteration-based hybrid approach. All of these approaches are evaluated and compared using two criteria: (1) the number of identified hits that are selected experiments validated to be responsive, and (2) the performance of the response prediction model trained on the data of selected experiments. The analysis was conducted for 57 drugs and the results show a significant improvement on identifying hits using active learning approaches compared with the random and greedy sampling method. Active learning approaches also show an improvement on response prediction performance for some of the drugs and analysis runs compared with the greedy sampling method.

3.
bioRxiv ; 2023 Apr 04.
Article En | MEDLINE | ID: mdl-37066387

RNA isoforms influence cell identity and function. Until recently, technological limitations prevented a genome-wide appraisal of isoform influence on cell identity in various parts of the brain. Using enhanced long-read single-cell isoform sequencing, we comprehensively analyze RNA isoforms in multiple mouse brain regions, cell subtypes, and developmental timepoints from postnatal day 14 (P14) to adult (P56). For 75% of genes, full-length isoform expression varies along one or more axes of phenotypic origin, underscoring the pervasiveness of isoform regulation across multiple scales. As expected, splicing varies strongly between cell types. However, certain gene classes including neurotransmitter release and reuptake as well as synapse turnover, harbor significant variability in the same cell type across anatomical regions, suggesting differences in network activity may influence cell-type identity. Glial brain-region specificity in isoform expression includes strong poly(A)-site regulation, whereas neurons have stronger TSS regulation. Furthermore, developmental patterns of cell-type specific splicing are especially pronounced in the murine adolescent transition from P21 to P28. The same cell type traced across development shows more isoform variability than across adult anatomical regions, indicating a coordinated modulation of functional programs dictating neural development. As most cell-type specific exons in P56 mouse hippocampus behave similarly in newly generated data from human hippocampi, these principles may be extrapolated to human brain. However, human brains have evolved additional cell-type specificity in splicing, suggesting gain-of-function isoforms. Taken together, we present a detailed single-cell atlas of full-length brain isoform regulation across development and anatomical regions, providing a previously unappreciated degree of isoform variability across multiple scales of the brain.

4.
Front Med (Lausanne) ; 10: 1086097, 2023.
Article En | MEDLINE | ID: mdl-36873878

Cancer claims millions of lives yearly worldwide. While many therapies have been made available in recent years, by in large cancer remains unsolved. Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans, ultimately suppressing tumors, alleviating suffering, and prolonging lives of patients. A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods. These papers investigate diverse data representations, neural network architectures, learning methodologies, and evaluations schemes. However, deciphering promising predominant and emerging trends is difficult due to the variety of explored methods and lack of standardized framework for comparing drug response prediction models. To obtain a comprehensive landscape of deep learning methods, we conducted an extensive search and analysis of deep learning models that predict the response to single drug treatments. A total of 61 deep learning-based models have been curated, and summary plots were generated. Based on the analysis, observable patterns and prevalence of methods have been revealed. This review allows to better understand the current state of the field and identify major challenges and promising solution paths.

5.
Structure ; 31(4): 492-503.e7, 2023 04 06.
Article En | MEDLINE | ID: mdl-36870335

Despite tremendous efforts, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. SARS-CoV-2 envelope is a key structural component of the virion that encapsulates viral RNA. It is composed of three structural proteins, spike, membrane (M), and envelope, which interact with each other and with the lipids acquired from the host membranes. Here, we developed and applied an integrative multi-scale computational approach to model the envelope structure of SARS-CoV-2 with near atomistic detail, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely understudied, M protein. The molecular dynamics simulations allowed us to test the envelope stability under different configurations and revealed that the M dimers agglomerated into large, filament-like, macromolecular assemblies with distinct molecular patterns. These results are in good agreement with current experimental data, demonstrating a generic and versatile approach to model the structure of a virus de novo.


COVID-19 , SARS-CoV-2 , Humans , Molecular Dynamics Simulation
6.
Cancers (Basel) ; 16(1)2023 Dec 21.
Article En | MEDLINE | ID: mdl-38201477

Cancer is a heterogeneous disease in that tumors of the same histology type can respond differently to a treatment. Anti-cancer drug response prediction is of paramount importance for both drug development and patient treatment design. Although various computational methods and data have been used to develop drug response prediction models, it remains a challenging problem due to the complexities of cancer mechanisms and cancer-drug interactions. To better characterize the interaction between cancer and drugs, we investigate the feasibility of integrating computationally derived features of molecular mechanisms of action into prediction models. Specifically, we add docking scores of drug molecules and target proteins in combination with cancer gene expressions and molecular drug descriptors for building response models. The results demonstrate a marginal improvement in drug response prediction performance when adding docking scores as additional features, through tests on large drug screening data. We discuss the limitations of the current approach and provide the research community with a baseline dataset of the large-scale computational docking for anti-cancer drugs.

7.
Cell Rep ; 37(8): 110045, 2021 11 23.
Article En | MEDLINE | ID: mdl-34818539

Alternative splicing introduces an additional layer of protein diversity and complexity in regulating cellular functions that can be specific to the tissue and cell type, physiological state of a cell, or disease phenotype. Recent high-throughput experimental studies have illuminated the functional role of splicing events through rewiring protein-protein interactions; however, the extent to which the macromolecular interactions are affected by alternative splicing has yet to be fully understood. In silico methods provide a fast and cheap alternative to interrogating functional characteristics of thousands of alternatively spliced isoforms. Here, we develop an accurate feature-based machine learning approach that predicts whether a protein-protein interaction carried out by a reference isoform is perturbed by an alternatively spliced isoform. Our method, called the alternatively spliced interactions prediction (ALT-IN) tool, is compared with the state-of-the-art PPI prediction tools and shows superior performance, achieving 0.92 in precision and recall values.


Forecasting/methods , Protein Interaction Mapping/methods , Protein Interaction Maps/physiology , Alternative Splicing/genetics , Computational Biology/methods , Humans , Protein Interaction Maps/genetics , Protein Isoforms/analysis , Protein Isoforms/metabolism , RNA Splicing , Supervised Machine Learning
9.
Viruses ; 12(4)2020 03 25.
Article En | MEDLINE | ID: mdl-32218151

During its first two and a half months, the recently emerged 2019 novel coronavirus, SARS-CoV-2, has already infected over one-hundred thousand people worldwide and has taken more than four thousand lives. However, the swiftly spreading virus also caused an unprecedentedly rapid response from the research community facing the unknown health challenge of potentially enormous proportions. Unfortunately, the experimental research to understand the molecular mechanisms behind the viral infection and to design a vaccine or antivirals is costly and takes months to develop. To expedite the advancement of our knowledge, we leveraged data about the related coronaviruses that is readily available in public databases and integrated these data into a single computational pipeline. As a result, we provide comprehensive structural genomics and interactomics roadmaps of SARS-CoV-2 and use this information to infer the possible functional differences and similarities with the related SARS coronavirus. All data are made publicly available to the research community.


Betacoronavirus/genetics , Viral Proteins/genetics , Animals , Betacoronavirus/chemistry , Binding Sites , Biological Evolution , COVID-19 , Chiroptera/virology , Computational Biology , Conserved Sequence , Coronavirus Infections , Coronavirus Nucleocapsid Proteins , Genome, Viral , Genomics , Humans , Ligands , Models, Molecular , Nucleocapsid Proteins/chemistry , Pandemics , Phosphoproteins , Phylogeny , Pneumonia, Viral , Protein Interaction Mapping , Protein Structure, Tertiary , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/chemistry , Viral Matrix Proteins/chemistry
10.
Bioinformatics ; 35(24): 5374-5378, 2019 12 15.
Article En | MEDLINE | ID: mdl-31350874

MOTIVATION: The complexity of protein-protein interactions (PPIs) is further compounded by the fact that an average protein consists of two or more domains, structurally and evolutionary independent subunits. Experimental studies have demonstrated that an interaction between a pair of proteins is not carried out by all domains constituting each protein, but rather by a select subset. However, determining which domains from each protein mediate the corresponding PPI is a challenging task. RESULTS: Here, we present domain interaction statistical potential (DISPOT), a simple knowledge-based statistical potential that estimates the propensity of an interaction between a pair of protein domains, given their structural classification of protein (SCOP) family annotations. The statistical potential is derived based on the analysis of >352 000 structurally resolved PPIs obtained from DOMMINO, a comprehensive database of structurally resolved macromolecular interactions. AVAILABILITY AND IMPLEMENTATION: DISPOT is implemented in Python 2.7 and packaged as an open-source tool. DISPOT is implemented in two modes, basic and auto-extraction. The source code for both modes is available on GitHub: https://github.com/korkinlab/dispot and standalone docker images on DockerHub: https://hub.docker.com/r/korkinlab/dispot. The web server is freely available at http://dispot.korkinlab.org/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Software , Macromolecular Substances , Molecular Sequence Annotation , Protein Domains , Proteins
...