Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Sex Differ ; 14(1): 70, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817272

RESUMEN

INTRODUCTION: Current understanding of sodium (Na+) handling is based on studies done primarily in males. Contrary to the gradual increase in high salt (HS) induced natriuresis over 3-5 days in males, female Sprague Dawley (SD) rats have a robust natriuresis after 1 day of HS. Renal endothelin-1 (ET-1) signaling, through ET receptor A and B, is an important natriuretic pathway and was implicated in our previous dietary salt acclimation studies, however, the contribution of ET receptors to sex-differences in acclimation to dietary Na+ challenges has yet to be clarified. We hypothesized that ET receptors mediate the augmented natriuretic capacity of female rats in response to a HS diet. METHODS: To test our hypothesis, male and female SD rats were implanted with telemeters and randomly assigned to treatment with A-182086, a dual ETA and ETB receptor antagonist, or control. 24-h urine samples were collected and assessed for electrolytes and ET-1. Studies were performed on a normal salt (NS, 0.3% NaCl) diet and after challenging rats with HS (4% NaCl) diet for 1 day. RESULTS: We found that A-182086 increased blood pressure in male and female SD rats fed either diet. Importantly, A-182086 eliminated sex-differences in natriuresis on NS and HS. In particular, A-182086 promotes HS-induced natriuresis in male rats rather than attenuating the natriuretic capacity of females. Further, the sex-difference in urinary ET-1 excretion in NS-fed rats was eliminated by A-182086. CONCLUSION: In conclusion, ET receptors are crucial for mediating sex-difference in the natriuretic capacity primarily through their actions in male rats.


Sodium balance is essential for the human body. Sodium retention in the body can cause an increase in blood pressure. Historical understanding of sodium balance is based on studies done mostly in male subjects. Recently, we showed that male and female rats acclimate to a high salt diet differently. Male rats take 3­5 days to increase sodium excretion while female rats increase sodium excretion after 1 day. Endothelin-1 which signals through two receptors, endothelin receptor subtype A and B, is important for controlling sodium excretion by the kidneys. There are known sex-differences in the ratio and function of endothelin receptors in the kidney. However, the role of endothelin receptors in salt handling during acclimation to increased salt intake is not clear. This study sought to identify whether blocking endothelin receptors eliminates the sex-difference in sodium excretion in response to a high salt diet. We treated male and female rats with a blocker for endothelin receptors and evaluated sodium handling by the kidney. Blockade of endothelin receptors increased sodium excretion in male rats fed a high salt diet; whereas sodium excretion in female rats was not affected by blocking endothelin receptors. These data indicate that ET receptors contribute to male­female differences in sodium handling during adjusting to an increased dietary salt.


Asunto(s)
Cloruro de Sodio Dietético , Cloruro de Sodio , Ratas , Masculino , Femenino , Animales , Cloruro de Sodio/farmacología , Cloruro de Sodio Dietético/farmacología , Ratas Sprague-Dawley , Receptor de Endotelina B/fisiología , Endotelinas , Sodio/metabolismo , Endotelina-1 , Dieta , Aclimatación
2.
medRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745604

RESUMEN

Background: Ambulatory blood pressure (BP) monitoring measures nighttime BP and BP dipping, which are superior to in-clinic BP for predicting cardiovascular disease (CVD), the leading cause of death in America. Compared with other racial/ethnic groups, Black Americans exhibit elevated nighttime BP and attenuated BP dipping, including in young adulthood. Social determinants of health contribute to disparities in CVD risk, but the contribution of neighborhood deprivation on nighttime BP is unclear. Therefore, we examined associations between neighborhood deprivation with nighttime BP and BP dipping in young Black and White adults. Methods: We recruited 21 Black and 26 White participants (20 M/27 F, mean age: 21 years, body mass index: 25±4 kg/m2) for 24-hour ambulatory BP monitoring. We assessed nighttime BP and BP dipping (nighttime:daytime BP ratio). The area deprivation index (ADI) was used to measure neighborhood deprivation. Associations between ADI and ambulatory BP were examined. Results: Black participants exhibited higher nighttime diastolic BP compared with White participants (63±8 mmHg vs 58±7 mmHg, p=0.003), and attenuated BP dipping ratios for both systolic (0.92±0.06 vs 0.86±0.05, p=0.001) and diastolic BP (0.86±0.09 vs 0.78±0.08, p=0.007). Black participants experienced greater neighborhood deprivation compared with White participants (ADI scores: 110±8 vs 97±21, p<0.001), and ADI was associated with attenuated systolic BP dipping (ρ=0.342, p=0.019). Conclusions: Our findings suggest neighborhood deprivation may contribute to higher nighttime BP and attenuated BP dipping, which are prognostic of CVD, and more prevalent in Black adults. Targeted interventions to mitigate the effects of neighborhood deprivation may help to improve nighttime BP. Clinical Trial Registry: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04576338.

3.
Sci Rep ; 13(1): 10051, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344499

RESUMEN

Peritoneal dialysis (PD) is associated with increased cardiovascular (CV) risk. Studies of PD-related CV pathology in animal models are lacking despite the clinical importance. Here we introduce the phenotypic evaluation of a rat model of cardiorenal syndrome in response to chronic PD, complemented by a rich transcriptomic dataset detailing chronic PD-induced changes in left ventricle (LV) and kidney tissues. This study aims to determine how PD alters CV parameters and risk factors while identifying pathways for potential therapeutic targets. Sprague Dawley rats underwent Sham or 5/6 nephrectomy (5/6Nx) at 10 weeks of age. Six weeks later an abdominal dialysis catheter was placed in all rats before random assignment to Control or PD (3 daily 1-h exchanges) groups for 8 days. Renal and LV pathology and transcriptomic analysis was performed. The PD regimen reduced circulating levels of BUN in 5/6Nx, indicating dialysis efficacy. PD did not alter blood pressure or cardiovascular function in Sham or 5/6Nx rats, though it attenuated cardiac hypertrophy. Importantly PD increased serum triglycerides in 5/6Nx rats. Furthermore, transcriptomic analysis revealed that PD induced numerous changed transcripts involved with inflammatory pathways, including neutrophil activation and atherosclerosis signaling. We have adapted a uremic rat model of chronic PD. Chronic PD induced transcriptomic changes related to inflammatory signaling that occur independent of 5/6Nx and augmented circulating triglycerides and predicted atherosclerosis signaling in 5/6Nx LV tissues. The changes are indicative of increased CV risk due to PD and highlight several pathways for potential therapeutic targets.


Asunto(s)
Aterosclerosis , Diálisis Peritoneal , Ratas , Animales , Ratas Sprague-Dawley , Transcriptoma , Diálisis Renal , Diálisis Peritoneal/efectos adversos , Triglicéridos , Modelos Animales de Enfermedad
4.
Biomolecules ; 12(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35327604

RESUMEN

Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.


Asunto(s)
Receptor alfa de Estrógeno , Receptores Acoplados a Proteínas G , Envejecimiento , Animales , Estrógenos , Femenino , Proteínas de Unión al GTP , Riñón/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 316(3): H710-H721, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657727

RESUMEN

Cardiovascular-related pathologies are the single leading cause of death in patients with chronic kidney disease (CKD). Previously, we found that a 5/6th nephrectomy model of CKD leads to an upregulation of miR-21-5p in the left ventricle, targeting peroxisome proliferator-activated receptor-α and altering the expression of numerous transcripts involved with fatty acid oxidation and glycolysis. In the present study, we evaluated the potential for knockdown or overexpression of miR-21-5p to regulate lipid content, lipid peroxidation, and mitochondrial respiration in H9C2 cells. Cells were transfected with anti-miR-21-5p (40 nM), pre-miR-21-5p (20 nM), or the appropriate scrambled oligonucleotide controls before lipid treatment in culture or as part of the Agilent Seahorse XF fatty acid oxidation assay. Overexpression of miR-21-5p attenuated the lipid-induced increase in cellular lipid content, whereas suppression of miR-21-5p augmented it. The abundance of malondialdehyde, a product of lipid peroxidation, was significantly increased with lipid treatment in control cells but attenuated in pre-miR-21-5p-transfected cells. This suggests that miR-21-5p reduces oxidative stress. The cellular oxygen consumption rate (OCR) was increased in both pre-miR-21-5p- and anti-miR-21-5p-transfected cells. Levels of intracellular ATP were significantly higher in anti-mR-21-5p-transfected cells. Pre-miR-21-5p blocked additional increases in OCR in response to etomoxir and palmitic acid. Conversely, anti-miR-21-5p-transfected cells exhibited reduced OCR with both etomoxir and palmitic acid, and the glycolytic capacity was concomitantly reduced. Together, these results indicate that overexpression of miR-21-5p attenuates both lipid content and lipid peroxidation in H9C2 cells. This likely occurs by reducing cellular lipid uptake and utilization, shifting cellular metabolism toward reliance on the glycolytic pathway. NEW & NOTEWORTHY Both overexpression and suppression of miR-21-5p augment basal and maximal mitochondrial respiration. Our data suggest that reliance on glycolytic and fatty acid oxidation pathways can be modulated by the abundance of miR-21-5p within the cell. miR-21-5p regulation of mitochondrial respiration can be modulated by extracellular lipids.


Asunto(s)
Metabolismo de los Lípidos/genética , MicroARNs/genética , MicroARNs/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Consumo de Oxígeno/genética , Animales , Línea Celular , Ácidos Grasos/metabolismo , Glucólisis , Peroxidación de Lípido/genética , Malondialdehído/metabolismo , Mioblastos/metabolismo , Oxidación-Reducción , Estrés Oxidativo/genética , Ratas
6.
Hypertension ; 73(3): 630-639, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30595123

RESUMEN

mTOR (mammalian target of rapamycin) signaling has emerged as a key regulator in a wide range of cellular processes ranging from cell proliferation, immune responses, and electrolyte homeostasis. mTOR consists of 2 distinct protein complexes, mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2) with distinct downstream signaling events. mTORC1 has been implicated in pathological conditions, such as cancer and type 2 diabetes mellitus in humans, and inhibition of this pathway with rapamycin has been shown to attenuate salt-induced hypertension in Dahl salt-sensitive rats. Several studies have found that the mTORC2 pathway is involved in the regulation of renal tubular sodium and potassium transport, but its role in hypertension has remained largely unexplored. In the present study, we, therefore, determined the effect of mTORC2 inhibition with compound PP242 on salt-induced hypertension and renal injury in salt-sensitive rats. We found that PP242 not only completely prevented but also reversed salt-induced hypertension and kidney injury in salt-sensitive rats. PP242 exhibited potent natriuretic actions, and chronic administration tended to produce a negative Na+ balance even during high-salt feeding. The results indicate that mTORC2 and the related downstream associated pathways play an important role in regulation of sodium balance and arterial pressure regulation in salt-sensitive rats. Therapeutic suppression of the mTORC2 pathway represents a novel pathway for the potential treatment of hypertension.


Asunto(s)
Lesión Renal Aguda/prevención & control , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Inmunosupresores/farmacología , Masculino , Ratas , Ratas Endogámicas Dahl , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio Dietético/toxicidad
7.
Arterioscler Thromb Vasc Biol ; 36(6): 1254-62, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27079876

RESUMEN

OBJECTIVE: This study examined vascular actions of angiotensin 1-7 (ANG 1-7) in human atrial and adipose arterioles. APPROACH AND RESULTS: The endothelium-derived hyperpolarizing factor of flow-mediated dilation (FMD) switches from antiproliferative nitric oxide (NO) to proatherosclerotic hydrogen peroxide in arterioles from humans with coronary artery disease (CAD). Given the known vasoprotective properties of ANG 1-7, we tested the hypothesis that overnight ANG 1-7 treatment restores the NO component of FMD in arterioles from patients with CAD. Endothelial telomerase activity is essential for preserving the NO component of vasodilation in the human microcirculation; thus, we also tested whether telomerase activity was necessary for ANG 1-7-mediated vasoprotection by treating separate arterioles with ANG 1-7±the telomerase inhibitor 2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid. ANG 1-7 dilated arterioles from patients without CAD, whereas dilation was significantly reduced in arterioles from patients with CAD. In atrial arterioles from patients with CAD incubated with ANG 1-7 overnight, the NO synthase inhibitor NG-nitro-l-arginine methyl ester abolished FMD, whereas the hydrogen peroxide scavenger polyethylene glycol catalase had no effect. Conversely, in vessels incubated with ANG 1-7+2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid, NG-nitro-l-arginine methyl ester had no effect on FMD, but polyethylene glycol catalase abolished dilation. In cultured human coronary artery endothelial cells, ANG 1-7 significantly increased telomerase activity. These results indicate that ANG 1-7 dilates human microvessels, and dilation is abrogated in the presence of CAD. Furthermore, ANG 1-7 treatment is sufficient to restore the NO component of FMD in arterioles from patients with CAD in a telomerase-dependent manner. CONCLUSIONS: ANG 1-7 exerts vasoprotection in the human microvasculature via modulation of telomerase activity.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Angiotensina I/farmacología , Arteriolas/efectos de los fármacos , Vasos Coronarios/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Telomerasa/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Anciano , Arteriolas/enzimología , Arteriolas/fisiopatología , Estudios de Casos y Controles , Células Cultivadas , Enfermedad de la Arteria Coronaria/enzimología , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/enzimología , Vasos Coronarios/fisiopatología , Relación Dosis-Respuesta a Droga , Células Endoteliales/enzimología , Inhibidores Enzimáticos/farmacología , Femenino , Atrios Cardíacos , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/agonistas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Telomerasa/antagonistas & inhibidores , Telomerasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...