Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Invest Ophthalmol Vis Sci ; 65(5): 22, 2024 May 01.
Article En | MEDLINE | ID: mdl-38743414

Purpose: To describe the clinical, electrophysiological and genetic spectrum of inherited retinal diseases associated with variants in the PRPH2 gene. Methods: A total of 241 patients from 168 families across 15 sites in 9 countries with pathogenic or likely pathogenic variants in PRPH2 were included. Records were reviewed for age at symptom onset, visual acuity, full-field ERG, fundus colour photography, fundus autofluorescence (FAF), and SD-OCT. Images were graded into six phenotypes. Statistical analyses were performed to determine genotype-phenotype correlations. Results: The median age at symptom onset was 40 years (range, 4-78 years). FAF phenotypes included normal (5%), butterfly pattern dystrophy, or vitelliform macular dystrophy (11%), central areolar choroidal dystrophy (28%), pseudo-Stargardt pattern dystrophy (41%), and retinitis pigmentosa (25%). Symptom onset was earlier in retinitis pigmentosa as compared with pseudo-Stargardt pattern dystrophy (34 vs 44 years; P = 0.004). The median visual acuity was 0.18 logMAR (interquartile range, 0-0.54 logMAR) and 0.18 logMAR (interquartile range 0-0.42 logMAR) in the right and left eyes, respectively. ERG showed a significantly reduced amplitude across all components (P < 0.001) and a peak time delay in the light-adapted 30-Hz flicker and single-flash b-wave (P < 0.001). Twenty-two variants were novel. The central areolar choroidal dystrophy phenotype was associated with 13 missense variants. The remaining variants showed marked phenotypic variability. Conclusions: We described six distinct FAF phenotypes associated with variants in the PRPH2 gene. One FAF phenotype may have multiple ERG phenotypes, demonstrating a discordance between structure and function. Given the vast spectrum of PRPH2 disease our findings are useful for future clinical trials.


Electroretinography , Peripherins , Phenotype , Retinal Dystrophies , Visual Acuity , Humans , Peripherins/genetics , Middle Aged , Adult , Male , Female , Adolescent , Retinal Dystrophies/genetics , Retinal Dystrophies/physiopathology , Retinal Dystrophies/diagnosis , Aged , Visual Acuity/physiology , Child , Young Adult , Child, Preschool , Tomography, Optical Coherence , Mutation , Fluorescein Angiography , Genetic Association Studies , Retrospective Studies , DNA Mutational Analysis , DNA/genetics , Pedigree
2.
Clin Exp Ophthalmol ; 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38443311

BACKGROUND: KCNV2-associated retinopathy is an autosomal recessive inherited retinal disease classically named cone dystrophy with supernormal rod response (CDSRR). This study aims to identify the best biomarker for evaluating the condition. METHODS: A retrospective review of eight patients from seven families with genetically confirmed KCNV2-associated retinopathy was performed. The best corrected visual acuity (BCVA), full-field electroretinogram (ffERG), pattern ERG (pERG), fundus imaging: retinal photograph and fundus autofluorescence (FAF), and optical coherence tomography (OCT) were analysed. RESULTS: There was a disproportionate increase in b-wave amplitude with a relatively small light intensity increase, especially between the two dimmest stimuli of DA 0.002 and 0.01 (-2.7 and -2.0 log cd.s/m2 ). The a-wave amplitude was normal. The a-wave peak time was delayed in all stimuli. The b-wave peak time was delayed compared to normal, but the gap tightened as intensity increased. The b:a wave ratio was above or at the upper limit for the reference values. FAF bull's eye maculopathy pattern was prominent and variable foveal disruption on OCT was apparent in all patients. Legal blindness was reached before the age of 25. CONCLUSIONS: We identified three potential electrophysiology biomarkers to assist in evaluating future therapies: the disproportionate b-wave amplitude jump, delayed a-wave and b-wave peak time, and the higher than normal b:a wave ratio. Any of these biomarkers found with photoreceptor ellipsoid zone foveal-perifoveal disruption should prompt consideration for KCNV2 retinopathy. The BCVA natural history data suggests the probable optimum therapeutic window in the first three decades of life.

3.
Ophthalmic Genet ; 44(5): 437-455, 2023 10.
Article En | MEDLINE | ID: mdl-37259572

BACKGROUND: Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) are causative for RP10 autosomal dominant retinitis pigmentosa (adRP). This study reports a novel variant in a family with IMPDH1-associated retinopathy. We also performed a comprehensive review of all reported IMPDH1 disease causing variants with their associated phenotype. MATERIALS AND METHODS: Multimodal imaging and functional studies documented the phenotype including best-corrected visual acuity (BCVA), fundus photograph, fundus autofluorescence (FAF), full field electroretinogram (ffERG), optical coherence tomography (OCT) and visual field (VF) data were collected. A literature search was performed in the PubMed and LOVD repositories. RESULTS: We report 3 cases from a 2-generation family with a novel heterozygous likely pathogenic variant p. (Lys314Gln) (exon 10). The ophthalmic phenotype showed diffuse outer retinal atrophy with mild pigmentary changes with sparse pigmentary changes. FAF showed early macular involvement with macular hyperautofluorescence (hyperAF) surrounded by hypoAF. Foveal ellipsoid zone island can be found in the youngest patient but not in the older ones. The literature review identified a further 56 heterozygous, 1 compound heterozygous, and 2 homozygous variant. The heterozygous group included 43 missense, 3 in-frame, 1 nonsense, 2 frameshift, 1 synonymous, and 6 intronic variants. Exon 10 was noted as a hotspot harboring 18 variants. CONCLUSIONS: We report a novel IMPDH1 variant. IMPDH1-associated retinopathy presents most frequently in the first decade of life with early macular involvement.


Retinal Degeneration , Retinitis Pigmentosa , Humans , Inosine Monophosphate , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Mutation , Oxidoreductases/genetics , Tomography, Optical Coherence , Electroretinography , Pedigree , IMP Dehydrogenase/genetics
4.
Doc Ophthalmol ; 146(3): 241-256, 2023 Jun.
Article En | MEDLINE | ID: mdl-36964447

BACKGROUND: Neuronal ceroid lipofuscinosis is a group of neurodegenerative disorders with varying visual dysfunction. CLN3 is a subtype which commonly presents with visual decline. Visual symptomatology can be indistinct making early diagnosis difficult. This study reports ocular biomarkers of CLN3 patients to assist clinicians in early diagnosis, disease monitoring, and future therapy. METHODS: Retrospective review of 5 confirmed CLN3 patients in our eye clinic. Best corrected visual acuity (BCVA), electroretinogram (ERG), ultra-widefield (UWF) fundus photography and fundus autofluorescence (FAF), and optical coherence tomography (OCT) studies were undertaken. RESULTS: Five unrelated children, 4 females and 1 male, with median age of 6.2 years (4.6-11.7) at first assessment were investigated at the clinic from 2016 to 2021. Four homozygous and one heterozygous pathogenic CLN3 variants were found. Best corrected visual acuities (BCVAs) ranged from 0.18 to 0.88 logMAR at first presentation. Electronegative ERGs were identified in all patients. Bull's eye maculopathies found in all patients. Hyper-autofluorescence ring surrounding hypo-autofluorescence fovea on FAF was found. Foveal ellipsoid zone (EZ) disruptions were found in all patients with additional inner and outer retinal microcystic changes in one patient. Neurological problems noted included autism, anxiety, motor dyspraxia, behavioural issue, and psychomotor regression. CONCLUSIONS: CLN3 patients presented at median age 6.2 years with visual decline. Early onset maculopathy with an electronegative ERG and variable cognitive and motor decline should prompt further investigations including neuropaediatric evaluation and genetic assessment for CLN3 disease. The structural parameters such as EZ and FAF will facilitate ocular monitoring.


Electroretinography , Retinal Diseases , Child , Female , Humans , Male , Retina , Multimodal Imaging , Electrophysiology , Tomography, Optical Coherence/methods , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics
5.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article En | MEDLINE | ID: mdl-35409265

The inherited retinal dystrophies (IRDs) are a clinically and genetically complex group of disorders primarily affecting the rod and cone photoreceptors or other retinal neuronal layers, with emerging therapies heralding the need for accurate molecular diagnosis. Targeted capture and panel-based strategies examining the partial or full exome deliver molecular diagnoses in many IRD families tested. However, approximately one in three families remain unsolved and unable to obtain personalised recurrence risk or access to new clinical trials or therapy. In this study, we investigated whole genome sequencing (WGS), focused assays and functional studies to assist with unsolved IRD cases and facilitate integration of these approaches to a broad molecular diagnostic clinical service. The WGS approach identified variants not covered or underinvestigated by targeted capture panel-based clinical testing strategies in six families. This included structural variants, with notable benefit of the WGS approach in repetitive regions demonstrated by a family with a hybrid gene and hemizygous missense variant involving the opsin genes, OPN1LW and OPN1MW. There was also benefit in investigation of the repetitive GC-rich ORF15 region of RPGR. Further molecular investigations were facilitated by focused assays in these regions. Deep intronic variants were identified in IQCB1 and ABCA4, with functional RNA based studies of the IQCB1 variant revealing activation of a cryptic splice acceptor site. While targeted capture panel-based methods are successful in achieving an efficient molecular diagnosis in a proportion of cases, this study highlights the additional benefit and clinical value that may be derived from WGS, focused assays and functional genomics in the highly heterogeneous IRDs.


Retinal Dystrophies , ATP-Binding Cassette Transporters/genetics , Calmodulin-Binding Proteins/genetics , Exome , Eye Proteins/genetics , Humans , Mutation , Pedigree , RNA Splice Sites , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Exome Sequencing/methods , Whole Genome Sequencing
6.
J Pers Med ; 12(3)2022 Mar 21.
Article En | MEDLINE | ID: mdl-35330501

The RPGR gene encodes Retinitis Pigmentosa GTPase Regulator, a known interactor with ciliary proteins, which is involved in maintaining healthy photoreceptor cells. Variants in RPGR are the main contributor to X-linked rod-cone dystrophy (RCD), and RPGR gene therapy approaches are in clinical trials. Hence, elucidation of the pathogenicity of novel RPGR variants is important for a patient therapy opportunity. Here, we describe a novel intronic RPGR variant, c.1415 − 9A>G, in a patient with RCD, which was classified as a variant of uncertain significance according to current clinical diagnostic criteria. The variant lay several base pairs intronic to the canonical splice acceptor site, raising suspicion of an RPGR RNA splicing abnormality and consequent protein dysfunction. To investigate disease causation in an appropriate disease model, induced pluripotent stem cells were generated from patient fibroblasts and differentiated to retinal pigment epithelium (iPSC-RPE) and retinal organoids (iPSC-RO). Abnormal RNA splicing of RPGR was demonstrated in patient fibroblasts, iPSC-RPE and iPSC-ROs, leading to a predicted frameshift and premature stop codon. Decreased RPGR expression was demonstrated in these cell types, with a striking loss of RPGR localization at the ciliary transitional zone, critically in the photoreceptor cilium of the patient iPSC-ROs. Mislocalisation of rhodopsin staining was present in the patient's iPSC-RO rod photoreceptor cells, along with an abnormality of L/M opsin staining affecting cone photoreceptor cells and increased photoreceptor apoptosis. Additionally, patient iPSC-ROs displayed an increase in F-actin expression that was consistent with an abnormal actin regulation phenotype. Collectively, these studies indicate that the splicing abnormality caused by the c.1415 − 9A>G variant has an impact on RPGR function. This work has enabled the reclassification of this variant to pathogenic, allowing the consideration of patients with this variant having access to gene therapy clinical trials. In addition, we have identified biomarkers of disease suitable for the interrogation of other RPGR variants of uncertain significance.

7.
Stem Cells Int ; 2021: 4536382, 2021.
Article En | MEDLINE | ID: mdl-34938339

Human induced pluripotent stem cells (hiPSCs) generated from patients and the derivative retinal cells enable the investigation of pathological and novel variants in relevant cell populations. Biallelic pathogenic variants in RPE65 cause early-onset severe retinal dystrophy (EOSRD) or Leber congenital amaurosis (LCA). Increasingly, regulatory-approved in vivo RPE65 retinal gene replacement therapy is available for patients with these clinical features, but only if they have biallelic pathological variants and sufficient viable retinal cells. In our cohort of patients, we identified siblings with early-onset severe retinal degeneration where genomic studies revealed compound heterozygous variants in RPE65, one a known pathogenic missense variant and the other a novel synonymous variant of uncertain significance. The synonymous variant was suspected to affect RNA splicing. Since RPE65 is very poorly expressed in all tissues except the retinal pigment epithelium (RPE), we generated hiPSC-derived RPE cells from the parental carrier of the synonymous variant. Sequencing of RNA obtained from hiPSC-RPE cells demonstrated heterozygous skipping of RPE65 exon 2 and the introduction of a premature stop codon in the mRNA. Minigene studies confirmed the splicing aberration. Results from this study led to reclassification of the synonymous variant to a pathogenic variant, providing the affected patients with access to RPE65 gene replacement therapy.

8.
Ophthalmic Genet ; 42(6): 706-716, 2021 12.
Article En | MEDLINE | ID: mdl-34289798

PURPOSE: Mer tyrosine kinase-retinitis pigmentosa (MERTK-RP) causes a primary defect in the retinal pigment epithelium, which subsequently affects rod and cone photoreceptors. The study aims to identify the most appropriate MERTK-RP biomarkers to measure disease progression for deciding the optimum therapeutic trial intervention time. MATERIALS AND METHODS: Patients' data from baseline (BL) and last follow-up (LFU) were reviewed. Best corrected visual acuity (BCVA), spectral domain-optical coherence tomography (SD-OCT), ultra-widefield fundus autofluorescence (UWF-FAF) patterns, kinetic perimetry (KP), and electroretinography (ERG) parameters were analyzed. RESULTS: Five patients were included with the mean age of 17.7 ± 14.4 years old (6.7-42.3) at BL and mean BCVA follow-up of 8.4 ± 5.1 years. Mean BCVA at BL and LFU were 0.84 ± 0.86 LogMAR and 1.14 ± 0.86 LogMAR, respectively. The BCVA decline rate was 0.05 ± 0.03 LogMAR units/year. Ellipzoid zones (EZ) were measurable in eight eyes with mean BL length of 1293.75 ± 421.07 µm and reduction of 140.95 ± 69.28 µm/year and mean BL CMT of 174.2 ± 37.52 µm with the rate of 11.2 ± 12.77 µm declining/year. Full-field ERG (ffERG) and pattern ERG (pERG) were barely recordable. UWF-FAF showed central macular hyper-autofluorescence (hyperAF). KP (III4e and V4e) was normal in two eyes, restricted nasally in four eyes, superior wedge defect in two eyes and undetectable in two eyes. The four restricted nasally KPs became worse, while the others stayed almost unchanged. CONCLUSIONS: This cohort showed early visual loss, moderately rapid EZ reduction and macular hyperAF. EZ, CMT, and BCVA were consistently reduced. Relative rapid decline in these biomarkers reflecting visual function suggests an early and narrow timespan for intervention.


Biomarkers , Retinitis Pigmentosa/genetics , Vision Disorders/genetics , c-Mer Tyrosine Kinase/genetics , Adolescent , Adult , Child , Electroretinography , Female , Fluorescein Angiography , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Retina/physiopathology , Retinal Pigment Epithelium/pathology , Retinitis Pigmentosa/diagnostic imaging , Retinitis Pigmentosa/physiopathology , Tomography, Optical Coherence , Vision Disorders/diagnosis , Vision Disorders/physiopathology , Visual Acuity/physiology , Visual Field Tests , Visual Fields/physiology , Young Adult
9.
Hum Mutat ; 42(9): 1173-1183, 2021 09.
Article En | MEDLINE | ID: mdl-34101287

Congenital cataracts are one of the major causes of childhood-onset blindness around the world. Genetic diagnosis provides benefits through avoidance of unnecessary tests, surveillance of extraocular features, and genetic family information. In this study, we demonstrate the value of genome sequencing in improving diagnostic yield in congenital cataract patients and families. We applied genome sequencing to investigate 20 probands with congenital cataracts. We examined the added value of genome sequencing across a total cohort of 52 probands, including 14 unable to be diagnosed using previous microarray and exome or panel-based approaches. Although exome or genome sequencing would have detected the variants in 35/52 (67%) of the cases, specific advantages of genome sequencing led to additional diagnoses in 10% (5/52) of the overall cohort, and we achieved an overall diagnostic rate of 77% (40/52). Specific benefits of genome sequencing were due to detection of small copy number variants (2), indels in repetitive regions (2) or single-nucleotide variants (SNVs) in GC-rich regions (1), not detectable on the previous microarray, exome sequencing, or panel-based approaches. In other cases, SNVs were identified in cataract disease genes, including those newly identified since our previous study. This study highlights the additional yield of genome sequencing in congenital cataracts.


Cataract , Exome , Cataract/diagnosis , Cataract/genetics , Chromosome Mapping , DNA Copy Number Variations/genetics , Exome/genetics , High-Throughput Nucleotide Sequencing , Humans , Exome Sequencing
10.
Eur J Hum Genet ; 29(5): 881-886, 2021 05.
Article En | MEDLINE | ID: mdl-33633367

The COL9A3 gene encodes one of the three alpha chains of Type IX collagen, with heterozygous variants reported to cause multiple epiphyseal dysplasia, and suggested as contributory in some cases of sensorineural hearing loss. Patients with homozygous variants have midface hypoplasia, myopia, sensorineural hearing loss, epiphyseal changes and carry a diagnosis of Stickler syndrome. Variants in COL9A3 have not previously been reported to cause vitreoretinal degeneration and/or retinal detachments. This report describes two families with autosomal dominant inheritance and predominant features of peripheral vitreoretinal lattice degeneration and retinal detachment. Genomic sequencing revealed a heterozygous splice variant in COL9A3 [NG_016353.1(NM_001853.4):c.1107 + 1G>C, NC_000020.10(NM_001853.4):c.1107 + 1G>C, LRG1253t1] in Family 1, and a heterozygous missense variant [NG_016353.1(NM_001853.4):c.388G>A p.(Gly130Ser)] in Family 2, each segregating with disease. cDNA studies of the splice variant demonstrated an in-frame deletion in the COL2 domain, and the missense variant occurred in the COL3 domain, both indicating the critical role of Type IX collagen in the vitreous base of the eye.


Collagen Type IX/genetics , Retinal Degeneration/genetics , Retinal Detachment/genetics , Adult , Female , Genes, Dominant , Heterozygote , Humans , Male , Middle Aged , Mutation, Missense , Pedigree , Retinal Degeneration/pathology , Retinal Detachment/pathology , Vitreous Body/pathology
11.
Genet Med ; 22(10): 1623-1632, 2020 10.
Article En | MEDLINE | ID: mdl-32499604

PURPOSE: Ocular anterior segment disorders (ASDs) are clinically and genetically heterogeneous, and genetic diagnosis often remains elusive. In this study, we demonstrate the value of a combined analysis protocol using phenotypic, genomic, and pedigree structure data to achieve a genetic conclusion. METHODS: We utilized a combination of chromosome microarray, exome sequencing, and genome sequencing with structural variant and trio analysis to investigate a cohort of 41 predominantly sporadic cases. RESULTS: We identified likely causative variants in 54% (22/41) of cases, including 51% (19/37) of sporadic cases and 75% (3/4) of cases initially referred as familial ASD. Two-thirds of sporadic cases were found to have heterozygous variants, which in most cases were de novo. Approximately one-third (7/22) of genetic diagnoses were found in rarely reported or recently identified ASD genes including PXDN, GJA8, COL4A1, ITPR1, CPAMD8, as well as the new phenotypic association of Axenfeld-Rieger anomaly with a homozygous ADAMTS17 variant. The remainder of the variants were in key ASD genes including FOXC1, PITX2, CYP1B1, FOXE3, and PAX6. CONCLUSIONS: We demonstrate the benefit of detailed phenotypic, genomic, variant, and segregation analysis to uncover some of the previously "hidden" heritable answers in several rarely reported and newly identified ocular ASD-related disease genes.


Eye Abnormalities , Eye Diseases, Hereditary , ADAMTS Proteins , Anterior Eye Segment , Cytochrome P-450 CYP1B1/genetics , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Forkhead Transcription Factors/genetics , Humans , Mutation , Pedigree
12.
Hum Mutat ; 39(3): 383-388, 2018 03.
Article En | MEDLINE | ID: mdl-29266598

A male neonate presented with severe weakness, hypotonia, contractures and congenital scoliosis. Skeletal muscle specimens showed marked atrophy and degeneration of fast fibers with striking nemaline rods and hypertrophy of slow fibers that were ultrastructurally normal. A neuromuscular gene panel identified a homozygous essential splice variant in TNNT3 (chr11:1956150G > A, NM_006757.3:c.681+1G > A). TNNT3 encodes skeletal troponin-Tfast and is associated with autosomal dominant distal arthrogryposis. TNNT3 has not previously been associated with nemaline myopathy (NM), a rare congenital myopathy linked to defects in proteins associated with thin filament structure and regulation. cDNA studies confirmed pathogenic consequences of the splice variant, eliciting exon-skipping and intron retention events leading to a frameshift. Western blot showed deficiency of troponin-Tfast protein with secondary loss of troponin-Ifast . We establish a homozygous splice variant in TNNT3 as the likely cause of severe congenital NM with distal arthrogryposis, characterized by specific involvement of Type-2 fibers and deficiency of troponin-Tfast .


Arthrogryposis/complications , Arthrogryposis/genetics , Genes, Recessive , Myopathies, Nemaline/complications , Myopathies, Nemaline/genetics , RNA Splicing/genetics , Troponin T/genetics , Humans , Infant , Infant, Newborn , Male , Myopathies, Nemaline/pathology , RNA Splice Sites/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
Eur J Hum Genet ; 26(3): 428-433, 2018 03.
Article En | MEDLINE | ID: mdl-29184169

Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.


Cone-Rod Dystrophies/genetics , Mutation, Missense , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Adolescent , Adult , Cone-Rod Dystrophies/pathology , Female , Humans
14.
Transl Pediatr ; 4(2): 181-8, 2015 Apr.
Article En | MEDLINE | ID: mdl-26835372

Complete hydatidiform moles (CHM) are abnormal pregnancies with no fetal development resulting from having two paternal genomes with no maternal contribution. It is important to distinguish CHM from partial hydatidiform moles, and non-molar abortuses, due to the increased risk of gestational trophoblastic neoplasia. We evaluated a series of products of conception (POC) (n=643) investigated by genome-wide microarray comparative genomic hybridisation (CGH) with the aim of refining our strategy for the identification of complete moles. Among 32 suspected molar pregnancies investigated by STR genotyping to supplement microarray CGH testing, we found 31.3% (10/32) CHM; all identified among 3.6% (10/272) early first trimester POC. We suggest that when using microarray CGH that genotyping using targeted STR analysis should be performed for all POC referrals to aid in the identification of CHM.

15.
Transl Pediatr ; 4(2): 139-63, 2015 Apr.
Article En | MEDLINE | ID: mdl-26835369

Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs.

...