Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Ther Med ; 28(2): 321, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38939174

RESUMEN

Triiodothyronine (T3) concentrations in plasma decrease during acute illness and it is unclear if this contributes to disease. Clinical and laboratory studies of T3 supplementation in disease have revealed little or no effect. It is uncertain if short term supplementation of T3 has any discernible effect in a healthy animals. Observational study of intravenous T3 (1 µg/kg/h) for 24 h in a healthy sheep model receiving protocol-guided intensive care supports (T3 group, n=5). A total of 45 endpoints were measured including hemodynamic, respiratory, renal, hematological, metabolic and endocrine parameters. Data were compared with previously published studies of sheep subject to the same support protocol without administered T3 (No T3 group, n=5). Plasma free T3 concentrations were elevated 8-fold by the infusion (pmol/l at 24 h; T3 group 34.9±9.9 vs. No T3 group 4.4±0.3, P<0.01, reference range 1.6 to 6.8). There was no significant physiological response to administration of T3 over the study duration. Supplementation of intravenous T3 for 24 h has no physiological effect on relevant physiological endpoints in healthy sheep. Further research is required to understand if the lack of effect of short-term T3 may be related to kinetics of T3 cellular uptake, metabolism and action, or acute counterbalancing hormone resistance. This information may be helpful in design of clinical T3 supplementation trials.

2.
Exp Ther Med ; 18(5): 3271-3280, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31602200

RESUMEN

Sepsis is a highly complex and often fatal syndrome which varies widely in its clinical manifestations, and therapies that target the underlying uncontrolled immune status in sepsis are needed. The failure of preclinical approaches to provide significant sepsis survival benefit in the clinic is often attributed to inappropriate animal disease models. It has been demonstrated that high mobility group box protein 1 (HMGB1) blockade can reduce inflammation, mortality and morbidity in experimental sepsis without promoting immunosuppression. Within this study, we explored the use of ovine anti-HMGB1 antibodies in a model of ovine septic shock incorporating intensive care supports (OSSICS). Results: Septic sheep exhibited elevated levels of HMGB1 within 12 h after the induction of sepsis. In this study, sepsis was induced in six anaesthetized adult Border Leicester × Merino ewes via intravenous instillation of E. coli and sheep monitored according to intensive care unit standard protocols for 26 h, with the requirement for noradrenaline as the primary endpoint. Septic sheep exhibited a hyperdynamic circulation, renal dysfunction, deranged coagulation profile and severe metabolic acidosis. Sheep were assigned a severity of illness score, which increased over time. While a therapeutic effect of intravenous anti-HMGB1 antibody could not be observed in this model due to limited animal numbers, a reduced bacterial dose induced a septic syndrome of much lower severity. With modifications including a reduced bacterial dose, a longer timeframe and broad spectrum antibiotics, the OSSICS model may become a robust tool for preclinical assessment of sepsis therapeutics.

3.
Crit Care Med ; 44(6): 1153-60, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26963323

RESUMEN

OBJECTIVES: Triiodothyronine concentration in plasma decreases during septic shock and may contribute to multiple organ dysfunction. We sought to determine the safety and efficacy of administering triiodothyronine, with and without hydrocortisone, in a model of septic shock. DESIGN: Randomized blinded placebo-controlled trial. SETTING: Preclinical research laboratory. SUBJECTS: Thirty-two sheep rendered septic with IV Escherichia coli and receiving protocol-guided sedation, ventilation, IV fluids, and norepinephrine infusion. INTERVENTIONS: Two hours following induction of sepsis, 32 sheep received a 24-hour IV infusion of 1) placebo + placebo, 2) triiodothyronine + placebo, 3) hydrocortisone + placebo, or 4) triiodothyronine + hydrocortisone. MEASUREMENTS AND MAIN RESULTS: Primary outcome was the total amount of norepinephrine required to maintain a target mean arterial pressure; secondary outcomes included hemodynamic and metabolic indices. Plasma triiodothyronine levels increased to supraphysiological concentrations with hormonal therapy. Following 24 hours of study drug infusion, the amount of norepinephrine required was no different between the study groups (mean ± SD µg/kg; placebo + placebo group 208 ± 392; triiodothyronine + placebo group 501 ± 370; hydrocortisone + placebo group 167 ± 286; triiodothyronine + hydrocortisone group 466 ± 495; p = 0.20). There was no significant treatment effect on any hemodynamic variable, metabolic parameter, or measure of organ function. CONCLUSIONS: A 24-hour infusion of triiodothyronine, with or without hydrocortisone, in an ovine model of septic shock did not markedly alter norepinephrine requirement or any other physiological parameter.


Asunto(s)
Antiinflamatorios/farmacología , Presión Arterial/efectos de los fármacos , Hidrocortisona/farmacología , Choque Séptico/tratamiento farmacológico , Triyodotironina/farmacología , Animales , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Infusiones Intravenosas , Norepinefrina/administración & dosificación , Distribución Aleatoria , Ovinos , Choque Séptico/fisiopatología , Método Simple Ciego , Triyodotironina/sangre
4.
Am J Respir Crit Care Med ; 194(6): 692-700, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-26967568

RESUMEN

RATIONALE: It is unclear how septic shock causes acute kidney injury (AKI) and whether this is associated with histological change. OBJECTIVES: We aimed to determine the nature and extent of changes in renal structure and function over time in an ovine model of septic shock. METHODS: Fifteen sheep were instrumented with a renal artery flow probe and renal vein cannula. Ten were given intravenous Escherichia coli to induce septic shock, and five acted as controls. Animals were mechanically ventilated for 48 hours, while receiving protocol-guided parenteral fluids and a norepinephrine infusion to maintain mean arterial pressure. Renal biopsies were taken every 24 hours or whenever animals were oliguric for 2 hours. A renal pathologist, blinded to tissue source, systematically quantified histological appearance by light and electron microscopy for 31 prespecified structural changes. MEASUREMENTS AND MAIN RESULTS: Sheep given E. coli developed septic shock, oliguria, increased serum creatinine, and reduced creatinine clearance (AKI), but there were no changes over time in renal blood flow between groups (P > 0.30) or over time within groups (P > 0.50). Renal oxygen consumption increased only in nonseptic animals (P = 0.01), but there was no between-group difference in renal lactate flux (P > 0.50). There was little structural disturbance in all biopsies and, although some cellular appearances changed over time, the only difference between septic and nonseptic animals was mesangial expansion on electron microscopy. CONCLUSIONS: In an intensive care-supported model of gram-negative septic shock, early AKI was not associated with changes in renal blood flow, oxygen delivery, or histological appearance. Other mechanisms must contribute to septic AKI.


Asunto(s)
Riñón/fisiopatología , Choque Séptico/fisiopatología , Lesión Renal Aguda/etiología , Animales , Biopsia , Presión Sanguínea , Gasto Cardíaco , Modelos Animales de Enfermedad , Femenino , Riñón/patología , Circulación Renal , Ovinos , Choque Séptico/complicaciones , Choque Séptico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...