Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(5): 990-997.e4, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36787746

RESUMEN

Food production, particularly of fed animals, is a leading cause of environmental degradation globally.1,2 Understanding where and how much environmental pressure different fed animal products exert is critical to designing effective food policies that promote sustainability.3 Here, we assess and compare the environmental footprint of farming industrial broiler chickens and farmed salmonids (salmon, marine trout, and Arctic char) to identify opportunities to reduce environmental pressures. We map cumulative environmental pressures (greenhouse gas emissions, nutrient pollution, freshwater use, and spatial disturbance), with particular focus on dynamics across the land and sea. We found that farming broiler chickens disturbs 9 times more area than farming salmon (∼924,000 vs. ∼103,500 km2) but yields 55 times greater production. The footprints of both sectors are extensive, but 95% of cumulative pressures are concentrated into <5% of total area. Surprisingly, the location of these pressures is similar (85.5% spatial overlap between chicken and salmon pressures), primarily due to shared feed ingredients. Environmental pressures from feed ingredients account for >78% and >69% of cumulative pressures of broiler chicken and farmed salmon production, respectively, and could represent a key leverage point to reduce environmental footprints. The environmental efficiency (cumulative pressures per tonne of production) also differs geographically, with areas of high efficiency revealing further potential to promote sustainability. The propagation of environmental pressures across the land and sea underscores the importance of integrating food policies across realms and sectors to advance food system sustainability.


Asunto(s)
Pollos , Salmón , Animales , Alimentos Marinos , Agricultura , Granjas , Acuicultura
2.
Nat Ecol Evol ; 6(12): 1808-1817, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36192542

RESUMEN

The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Cambio Climático , Antozoos/fisiología , Explotaciones Pesqueras , Peces/fisiología , Nutrientes
3.
Fish Fish (Oxf) ; 23(4): 800-811, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35912069

RESUMEN

Wild-caught fish are a bioavailable source of nutritious food that, if managed strategically, could enhance diet quality for billions of people. However, optimising nutrient production from the sea has not been a priority, hindering development of nutrition-sensitive policies. With fisheries management increasingly effective at rebuilding stocks and regulating sustainable fishing, we can now begin to integrate nutritional outcomes within existing management frameworks. Here, we develop a conceptual foundation for managing fisheries for multispecies Maximum Nutrient Yield (mMNY). We empirically test our approach using size-based models of North Sea and Baltic Sea fisheries and show that mMNY is predicted by the relative contribution of nutritious species to total catch and their vulnerability to fishing, leading to trade-offs between catch and specific nutrients. Simulated nutrient yield curves suggest that vitamin D, which is deficient in Northern European diets, was underfished at fishing levels that returned maximum catch weights. Analysis of global catch data shows there is scope for nutrient yields from most of the world's marine fisheries to be enhanced through nutrient-sensitive fisheries management. With nutrient composition data now widely available, we expect our mMNY framework to motivate development of nutrient-based reference points in specific contexts, such as data-limited fisheries. Managing for mMNY alongside policies that promote access to fish could help close nutrient gaps for coastal populations, maximising the contribution of wild-caught fish to global food and nutrition security.

4.
Proc Natl Acad Sci U S A ; 119(22): e2120817119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35605118

RESUMEN

Fish are an important source of bioavailable micronutrients and essential fatty acids, and capture fisheries have potential to substantially reduce dietary deficiencies. Vigorous debate has focused on trade and fishing in foreign waters as drivers of inequitable distribution of volume and value of fish, but their impact on nutrient supplies from fish is unknown. We analyze global catch, trade, and nutrient composition data for marine fisheries to quantify distribution patterns among countries with differing prevalence of inadequate nutrient intake. We find foreign fishing relocates 1.5 times more nutrients than international trade in fish. Analysis of nutrient flows among countries of different levels of nutrient intake shows fishing in foreign waters predominantly (but not exclusively) benefits nutrient-secure nations, an outcome amplified by trade. Next, we developed a nutritional vulnerability framework that shows those small island developing states and/or African nations currently benefiting from trade and foreign fishing, and countries with low adaptive capacity, are most vulnerable to future changes in nutrient supplies. Climate change exacerbates vulnerabilities for many nations. Harnessing the potential of global fisheries to address dietary deficiencies will require greater attention to nutrition objectives in fisheries' licensing deals and trade negotiations.


Asunto(s)
Internacionalidad , Desnutrición , Animales , Comercio , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Peces , Abastecimiento de Alimentos , Humanos , Caza , Nutrientes
5.
Rev Fish Biol Fish ; 32(1): 123-143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33589856

RESUMEN

Improved public understanding of the ocean and the importance of sustainable ocean use, or ocean literacy, is essential for achieving global commitments to sustainable development by 2030 and beyond. However, growing human populations (particularly in mega-cities), urbanisation and socio-economic disparity threaten opportunities for people to engage and connect directly with ocean environments. Thus, a major challenge in engaging the whole of society in achieving ocean sustainability by 2030 is to develop strategies to improve societal connections to the ocean. The concept of ocean literacy reflects public understanding of the ocean, but is also an indication of connections to, and attitudes and behaviours towards, the ocean. Improving and progressing global ocean literacy has potential to catalyse the behaviour changes necessary for achieving a sustainable future. As part of the Future Seas project (https://futureseas2030.org/), this paper aims to synthesise knowledge and perspectives on ocean literacy from a range of disciplines, including but not exclusive to marine biology, socio-ecology, philosophy, technology, psychology, oceanography and human health. Using examples from the literature, we outline the potential for positive change towards a sustainable future based on knowledge that already exists. We focus on four drivers that can influence and improve ocean literacy and societal connections to the ocean: (1) education, (2) cultural connections, (3) technological developments, and (4) knowledge exchange and science-policy interconnections. We explore how each driver plays a role in improving perceptions of the ocean to engender more widespread societal support for effective ocean management and conservation. In doing so, we develop an ocean literacy toolkit, a practical resource for enhancing ocean connections across a broad range of contexts worldwide.

6.
Rev Fish Biol Fish ; 32(1): 19-36, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33424142

RESUMEN

The oceans face a range of complex challenges for which the impacts on society are highly uncertain but mostly negative. Tackling these challenges is testing society's capacity to mobilise transformative action, engendering a sense of powerlessness. Envisaging positive but realistic visions of the future, and considering how current knowledge, resources, and technology could be used to achieve these futures, may lead to greater action to achieve sustainable transformations. Future Seas (www.FutureSeas2030.org) brought together researchers across career stages, Indigenous Peoples and environmental managers to develop scenarios for 12 challenges facing the oceans, leveraging interdisciplinary knowledge to improve society's capacity to purposefully shape the direction of marine social-ecological systems over the UN Decade of Ocean Science for Sustainable Development (2021-2030). We describe and reflect on Future Seas, providing guidance for co-developing scenarios in interdisciplinary teams tasked with exploring ocean futures. We detail the narrative development for two futures: our current trajectory based on published evidence, and a more sustainable future, consistent with the UN's Sustainable Development Goals, which is technically achievable using existing and emerging knowledge. Presentation of Business-as-usual and More Sustainable futures-together-allows communication of both trajectories, whilst also highlighting achievable, sustainable versions of the future. The advantages of the interdisciplinary approach taken include: (1) integrating different perspectives on solutions, (2) capacity to explore interactions between Life Under Water (Goal 14) and other SDGs, and (3) cross-disciplinary learning. This approach allowed participants to conceptualise shared visions of the future and co-design transformative pathways to achieving those futures. Supplementary Information SI: The online version contains supplementary material available at (10.1007/s11160-020-09629-5) contains supplementary material, which is available to authorized users.

7.
Rev Fish Biol Fish ; 32(1): 161-187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34366579

RESUMEN

The concentration of human population along coastlines has far-reaching effects on ocean and societal health. The oceans provide benefits to humans such as food, coastal protection and improved mental well-being, but can also impact negatively via natural disasters. At the same time, humans influence ocean health, for example, via coastal development or through environmental stewardship. Given the strong feedbacks between ocean and human health there is a need to promote desirable interactions, while minimising undesirable interactions. To this end, we articulate two scenarios for 2030. First, Business-as-Usual, named 'Command and (out of) Control', focuses on the anticipated future based on our current trajectory. Second, a more sustainable scenario called 'Living and Connecting', emphasises the development of interactions between oceans and society consistent with achieving the Sustainable Development Goals. We describe a potential pathway to achieving the 'Living and Connecting' scenario, centred on improving marine citizenship, achieving a more equitable distribution of power among stakeholders, and more equitable access to resources and opportunities. The constituent actions of this pathway can be categorised into four groups: (i) improved approaches to science and health communication that account for society's diverse values, beliefs and worldviews, (ii) a shift towards more trusted relationships among stakeholders to enable two-way knowledge exchange, (iii) economic incentives that encourage behavioural changes necessary for achieving desired sustainability outcomes, and (iv) stronger regulations that simultaneously focus on ocean and human health. We contend that these changes will provide improved outcomes for both oceans and society over the United Nations Decade of Ocean Science. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09669-5.

8.
Front Ecol Environ ; 18(10): 576-583, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408590

RESUMEN

Addressing unexpected events and uncertainty represents one of the grand challenges of the Anthropocene, yet ecosystem management is constrained by existing policy and laws that were not formulated to deal with today's accelerating rates of environmental change. In many cases, managing for simple regulatory standards has resulted in adverse outcomes, necessitating innovative approaches for dealing with complex social-ecological problems. We highlight a project in the US Great Plains where panarchy - a conceptual framework that emerged from resilience - was implemented at project onset to address the continued inability to halt large-scale transition from grass-to-tree dominance in central North America. We review how panarchy was applied, the initial outcomes and evidence for policy reform, and the opportunities and challenges for which it could serve as a useful model to contrast with traditional ecosystem management approaches.

9.
Ecol Evol ; 10(24): 14033-14051, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391700

RESUMEN

Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing-induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size-structured predation and cannibalism) in complex ecosystems undergoing rapid change.Changes in maturation size from fishing and predation have previously been explored with multi-species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco-evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size-structured food-web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species' relative maturation sizes under different types of selection pressures.Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium-size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.

10.
Nature ; 574(7776): 95-98, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554969

RESUMEN

Micronutrient deficiencies account for an estimated one million premature deaths annually, and for some nations can reduce gross domestic product1,2 by up to 11%, highlighting the need for food policies that focus on improving nutrition rather than simply increasing the volume of food produced3. People gain nutrients from a varied diet, although fish-which are a rich source of bioavailable micronutrients that are essential to human health4-are often overlooked. A lack of understanding of the nutrient composition of most fish5 and how nutrient yields vary among fisheries has hindered the policy shifts that are needed to effectively harness the potential of fisheries for food and nutrition security6. Here, using the concentration of 7 nutrients in more than 350 species of marine fish, we estimate how environmental and ecological traits predict nutrient content of marine finfish species. We use this predictive model to quantify the global spatial patterns of the concentrations of nutrients in marine fisheries and compare nutrient yields to the prevalence of micronutrient deficiencies in human populations. We find that species from tropical thermal regimes contain higher concentrations of calcium, iron and zinc; smaller species contain higher concentrations of calcium, iron and omega-3 fatty acids; and species from cold thermal regimes or those with a pelagic feeding pathway contain higher concentrations of omega-3 fatty acids. There is no relationship between nutrient concentrations and total fishery yield, highlighting that the nutrient quality of a fishery is determined by the species composition. For a number of countries in which nutrient intakes are inadequate, nutrients available in marine finfish catches exceed the dietary requirements for populations that live within 100 km of the coast, and a fraction of current landings could be particularly impactful for children under 5 years of age. Our analyses suggest that fish-based food strategies have the potential to substantially contribute to global food and nutrition security.


Asunto(s)
Explotaciones Pesqueras , Peces/metabolismo , Abastecimiento de Alimentos , Internacionalidad , Micronutrientes/deficiencia , Micronutrientes/metabolismo , Estado Nutricional , Animales , Teorema de Bayes , Calcio/análisis , Preescolar , Proteínas en la Dieta/análisis , Ácidos Grasos Omega-3/análisis , Productos Pesqueros/análisis , Productos Pesqueros/economía , Explotaciones Pesqueras/economía , Peces/clasificación , Humanos , Lactante , Hierro/análisis , Micronutrientes/análisis , Selenio/análisis , Vitamina A/análisis , Zinc/análisis
12.
Ecol Evol ; 8(19): 9614-9623, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30386561

RESUMEN

The distribution of pattern across scales has predictive power in the analysis of complex systems. Discontinuity approaches remain a fruitful avenue of research in the quest for quantitative measures of resilience because discontinuity analysis provides an objective means of identifying scales in complex systems and facilitates delineation of hierarchical patterns in processes, structure, and resources. However, current discontinuity methods have been considered too subjective, too complicated and opaque, or have become computationally obsolete; given the ubiquity of discontinuities in ecological and other complex systems, a simple and transparent method for detection is needed. In this study, we present a method to detect discontinuities in census data based on resampling of a neutral model and provide the R code used to run the analyses. This method has the potential for advancing basic and applied ecological research.

13.
Ecology ; 99(11): 2421-2432, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30175443

RESUMEN

The cross-scale resilience model suggests that system-level ecological resilience emerges from the distribution of species' functions within and across the spatial and temporal scales of a system. It has provided a quantitative method for calculating the resilience of a given system and so has been a valuable contribution to a largely qualitative field. As it is currently laid out, the model accounts for the spatial and temporal scales at which environmental resources and species are present and the functional roles species play but does not inform us about how much resource is present or how much function is provided. In short, it does not account for abundance in the distribution of species and their functional roles within and across the scales of a system. We detail the ways in which we would expect species' abundance to be relevant to the cross-scale resilience model based on the extensive abundance literature in ecology. We also put forward a series of testable hypotheses that would improve our ability to anticipate and quantify how resilience is generated, and how ecosystems will (or will not) buffer recent rapid global changes. This stream of research may provide an improved foundation for the quantitative evaluation of ecological resilience.


Asunto(s)
Ecología , Ecosistema
14.
Ecol Evol ; 8(12): 6354-6368, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29988420

RESUMEN

Coral reefs provide food and livelihoods for hundreds of millions of people as well as harbour some of the highest regions of biodiversity in the ocean. However, overexploitation, land-use change and other local anthropogenic threats to coral reefs have left many degraded. Additionally, coral reefs are faced with the dual emerging threats of ocean warming and acidification due to rising CO 2 emissions, with dire predictions that they will not survive the century. This review evaluates the impacts of climate change on coral reef organisms, communities and ecosystems, focusing on the interactions between climate change factors and local anthropogenic stressors. It then explores the shortcomings of existing management and the move towards ecosystem-based management and resilience thinking, before highlighting the need for climate change-ready marine protected areas (MPAs), reduction in local anthropogenic stressors, novel approaches such as human-assisted evolution and the importance of sustainable socialecological systems. It concludes that designation of climate change-ready MPAs, integrated with other management strategies involving stakeholders and participation at multiple scales such as marine spatial planning, will be required to maximise coral reef resilience under climate change. However, efforts to reduce carbon emissions are critical if the long-term efficacy of local management actions is to be maintained and coral reefs are to survive.

16.
Glob Chang Biol ; 24(2): 580-596, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28833818

RESUMEN

With the human population expected to near 10 billion by 2050, and diets shifting towards greater per-capita consumption of animal protein, meeting future food demands will place ever-growing burdens on natural resources and those dependent on them. Solutions proposed to increase the sustainability of agriculture, aquaculture, and capture fisheries have typically approached development from single sector perspectives. Recent work highlights the importance of recognising links among food sectors, and the challenge cross-sector dependencies create for sustainable food production. Yet without understanding the full suite of interactions between food systems on land and sea, development in one sector may result in unanticipated trade-offs in another. We review the interactions between terrestrial and aquatic food systems. We show that most of the studied land-sea interactions fall into at least one of four categories: ecosystem connectivity, feed interdependencies, livelihood interactions, and climate feedback. Critically, these interactions modify nutrient flows, and the partitioning of natural resource use between land and sea, amid a backdrop of climate variability and change that reaches across all sectors. Addressing counter-productive trade-offs resulting from land-sea links will require simultaneous improvements in food production and consumption efficiency, while creating more sustainable feed products for fish and livestock. Food security research and policy also needs to better integrate aquatic and terrestrial production to anticipate how cross-sector interactions could transmit change across ecosystem and governance boundaries into the future.


Asunto(s)
Agricultura , Biodiversidad , Conservación de los Recursos Naturales/métodos , Abastecimiento de Alimentos , Animales , Cambio Climático , Conservación de los Recursos Naturales/tendencias , Explotaciones Pesqueras , Peces , Humanos , Ganado
17.
Nat Ecol Evol ; 1(11): 1625-1634, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29066813

RESUMEN

Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.


Asunto(s)
Conservación de los Recursos Hídricos , Ecosistema , Política Ambiental , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Hídricos/legislación & jurisprudencia , Política Ambiental/legislación & jurisprudencia , Océanos y Mares
18.
Nat Ecol Evol ; 1(9): 1240-1249, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29046559

RESUMEN

Fisheries and aquaculture make a crucial contribution to global food security, nutrition and livelihoods. However, the UN Sustainable Development Goals separate marine and terrestrial food production sectors and ecosystems. To sustainably meet increasing global demands for fish, the interlinkages among goals within and across fisheries, aquaculture and agriculture sectors must be recognized and addressed along with their changing nature. Here, we assess and highlight development challenges for fisheries-dependent countries based on analyses of interactions and trade-offs between goals focusing on food, biodiversity and climate change. We demonstrate that some countries are likely to face double jeopardies in both fisheries and agriculture sectors under climate change. The strategies to mitigate these risks will be context-dependent, and will need to directly address the trade-offs among Sustainable Development Goals, such as halting biodiversity loss and reducing poverty. Countries with low adaptive capacity but increasing demand for food require greater support and capacity building to transition towards reconciling trade-offs. Necessary actions are context-dependent and include effective governance, improved management and conservation, maximizing societal and environmental benefits from trade, increased equitability of distribution and innovation in food production, including continued development of low input and low impact aquaculture.


Asunto(s)
Agricultura , Acuicultura , Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Explotaciones Pesqueras
19.
Sci Rep ; 7(1): 10746, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878250

RESUMEN

Functional diversity is thought to enhance ecosystem resilience, driving research focused on trends in the functional composition of fisheries, most recently with new reconstructions of global catch data. However, there is currently little understanding of how accounting for unreported catches (e.g. small-scale and illegal fisheries, bycatch and discards) influences functional diversity trends in global fisheries. We explored how diversity estimates varied among reported and unreported components of catch in 2010, and found these components had distinct functional fingerprints. Incorporating unreported catches had little impact on global-scale functional diversity patterns. However, at smaller, management-relevant scales, the effects of incorporating unreported catches were large (changes in functional diversity of up to 46%). Our results suggest there is greater uncertainty about the risks to ecosystem integrity and resilience from current fishing patterns than previously recognized. We provide recommendations and suggest a research agenda to improve future assessments of functional diversity of global fisheries.

20.
Nat Ecol Evol ; 1(7): 188, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28812591

RESUMEN

Predicting population declines is a key challenge in the face of global environmental change. Abundance-based early warning signals have been shown to precede population collapses; however, such signals are sensitive to the low reliability of abundance estimates. Here, using historical data on whales harvested during the 20th century, we demonstrate that early warning signals can be present not only in the abundance data, but also in the more reliable body size data of wild populations. We show that during the period of commercial whaling, the mean body size of caught whales declined dramatically (by up to 4 m over a 70-year period), leading to early warning signals being detectable up to 40 years before the global collapse of whale stocks. Combining abundance and body size data can reduce the length of the time series required to predict collapse, and decrease the chances of false positive early warning signals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...