Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Physiol (Oxf) ; 240(2): e14078, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38205922

RESUMEN

AIM: To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS: Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS: Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION: CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.


Asunto(s)
Amoníaco , Dióxido de Carbono , Animales , Humanos , Dióxido de Carbono/metabolismo , Amoníaco/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Aminoácidos , Metilaminas
2.
Artículo en Inglés | MEDLINE | ID: mdl-35183760

RESUMEN

The effects of feeding (meal of 3% of body mass) on acid-base and nitrogen homeostasis were investigated in the seawater acclimated green shore crab, Carcinus maenas. Feeding did not change gastric fluid pH (~pH 6); however, feeding was associated with a respiratory acidosis. Hemolymph HCO3- did not increase during this acidosis, although titratable and net acid efflux changed from an uptake to an excretion. Feeding affected the crabs' nitrogen homeostasis causing a substantial increase in hemolymph ammonia and urea concentrations after six hours. At this point, hemolymph urea accounted for ~1/3 of nitrogenous waste accumulated within the hemolymph, suggesting a potential role in ammonia detoxification. The postprandial increase in hemolymph ammonia coincided with an 18-fold increase in ammonia excretion rates that accounted for the majority of net acid excreted by the crabs. Urea excretion rates did not increase after feeding; however, branchial urease activity increased, implying that the gills may possess a mechanism to form excretable ammonia through the catabolism of urea. Our results demonstrate that despite an acidic gastric compartment, C. maenas does not experience a postprandial alkaline tide and that any feeding related acid-base challenges are primarily derived from metabolic acid production. Our findings also indicate that unlike the bicarbonate buffering acid-base compensatory response induced by hypercapnia and emersion, acid-base challenges upon feeding are compensated through changes in the excretion of acid equivalents, mainly in the form of ammonia.


Asunto(s)
Braquiuros , Amoníaco , Animales , Nitrógeno , Agua de Mar , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA