Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
ACS Omega ; 9(6): 6731-6740, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38371818

Carbon nanotubes (CNTs) possess remarkable properties that make them valuable for various industrial applications. However, concerns have arisen regarding their potential adverse health effects, particularly in occupational settings. The main aim of this research was to examine the effects of short-term exposure to multiwalled carbon nanotube nanoparticles (MWCNT-NPs) on testicular oxidative stress in Swiss albino mice, taking into account various factors such as dosage, duration of exposure, and particle size of MWCNT-NP. In this study, 20 mice were used and placed into six different groups randomly. Four of these groups comprised four repetitions each, while the two groups served as the vehicle control with two repetitions each. The experimental groups received MWCNT-NP treatment, whereas the control group remained untreated. The mice in the experimental groups were exposed to MWCNT-NP for either 7 days or 14 days. Through oral administration, the MWCNT-NP solution was introduced at two distinct dosages: 0.45 and 0.90 µg, whereas the control group was subjected to distilled water rather than the MWCNT-NP solution. The investigation evaluated primary oxidative balance indicators-glutathione (GSH) and glutathione disulfide (GSSG)-in response to MWCNT-NP exposure. Significantly, a noticeable reduction in GSH levels and a concurrent increase in GSSG concentrations were observed in comparison to the control group. To better understand and explore the assessment of the redox status, the Nernst equation was used to calculate the redox potential. Intriguingly, the calculated redox potential exhibited a negative value, signifying an imbalance in the oxidative state in the testes. These findings suggest that short-term exposure to MWCNT-NP can lead to the initiation of testicular oxidative stress and may disrupt the male reproductive system. This is evident from the alterations observed in the levels of GSH and GSSG, as well as the negative redox potential. The research offers significant insights into the reproductive effects of exposure to MWCNTs and emphasizes the necessity of assessing oxidative stress in nanomaterial toxicity studies.

2.
Toxics ; 11(7)2023 Jul 02.
Article En | MEDLINE | ID: mdl-37505543

The present study was conducted to evaluate the quality of drinking water and assess the potential health hazards due to water contaminants in selected urban areas of Lahore, Pakistan. Water samples were collected from ten sites and analyzed for different physico-chemical parameters including turbidity, color, pH, total dissolved solids (TDS), nitrates, fluoride, residual chlorine, and total hardness. Additionally, heavy metal (arsenic) and microbial parameters (E. coli) were also determined in the water samples. Drinking water quality evaluation indices, including the water quality index (WQI) for physico-chemical and biological parameters and human health risk assessment (HHRA) for heavy metal were estimated using the analytical results of the target parameters. It was found in most of the areas that the levels of arsenic, fluoride, TDS, and residual chlorine were higher than those recommended by the National Environmental Quality Standard (NEQS) and World Health Organization (WHO) guidelines. In addition to the physico-chemical parameters, microbial content (E. coli) was also found in the drinking water samples of the selected areas. Statistical analysis of the results indicated that levels of target parameters in drinking water samples are significantly different between sampling sites. The WQI for all physico-chemical and microbial parameters indicated that drinking water in most of the areas was unfit and unsuitable (WQI > 100) for drinking purposes except for the water of Bhatti Gate and Chota Gaon Shahdara with a WQI of 87 and 91, respectively. Drinking water in these areas had a very poor WQI rating. According to HHRA, drinking water from the selected sites was found to be of high risk to children and adults. The carcinogenic risk of arsenic indicated that all samples were of high risk to both adults and children (4.60 and 4.37 × 10-3, respectively). Regular monitoring of drinking water quality is essential, and proactive measures must be implemented to ensure the treatment and availability of safe drinking water in urban areas.

...