Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 9: 851351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419443

RESUMEN

ADP-ribosylation is a post-translational modification that is catalyzed by the ADP-ribosyltransferase enzyme family. Major emphasis to date has been ADP-ribosylation's role in cancer; however, there is growing interest in its role in inflammation and cardiovascular disease. Despite a recent boom in ADP-ribosylation mass spectrometry-based proteomics, there are limited computational resources to evaluate the quality of reported ADP-ribosylated (ADPr) proteins. We recently developed a novel mass spectral annotation strategy (RiboMaP) that facilitates identification and reporting of ADPr peptides and proteins. This strategy can monitor the fragmentation properties of ADPr peptide-unique fragment ions, termed m-ions and p-ions, that in turn provide spectral quality scores for candidate ADP-ribosyl peptides. In this study, we leveraged the availability of publicly available ADP-ribosylome data, acquired on various mass spectrometers, to evaluate the broader applicability of RiboMaP. We observed that fragmentation spectra of ADPr peptides vary considerably across datasets; nonetheless, RiboMaP improves ADPr peptide spectral annotation across all studies. We then reanalyzed our own previously published in vitro ADP-ribosylome data to determine common responses to the pro-inflammatory cytokine, IFN-γ. We conclude that despite these recent advances in the field of ADPr proteomics, studies in the context of inflammation and cardiovascular disease still require further bench-to-informatics workflow development in order to capture ADPr signaling events related to inflammatory pathways.

2.
Mol Cell Proteomics ; 21(4): 100153, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34592425

RESUMEN

Mass-spectrometry-enabled ADP-ribosylation workflows are developing rapidly, providing researchers a variety of ADP-ribosylome enrichment strategies and mass spectrometric acquisition options. Despite the growth spurt in upstream technologies, systematic ADP-ribosyl (ADPr) peptide mass spectral annotation methods are lacking. HCD-dependent ADP-ribosylome studies are common, but the resulting MS2 spectra are complex, owing to a mixture of b/y-ions and the m/p-ion peaks representing one or more dissociation events of the ADPr moiety (m-ion) and peptide (p-ion). In particular, p-ions that dissociate further into one or more fragment ions can dominate HCD spectra but are not recognized by standard spectral annotation workflows. As a result, annotation strategies that are solely reliant upon the b/y-ions result in lower spectral scores that in turn reduce the number of reportable ADPr peptides. To improve the confidence of spectral assignments, we implemented an ADPr peptide annotation and scoring strategy. All MS2 spectra are scored for the ADPr m-ions, but once spectra are assigned as an ADPr peptide, they are further annotated and scored for the p-ions. We implemented this novel workflow to ADPr peptides enriched from the liver and spleen isolated from mice post 4 h exposure to systemic IFN-γ. HCD collision energy experiments were first performed on the Orbitrap Fusion Lumos and the Q Exactive, with notable ADPr peptide dissociation properties verified with CID (Lumos). The m-ion and p-ion series score distributions revealed that ADPr peptide dissociation properties vary markedly between instruments and within instrument collision energy settings, with consequences on ADPr peptide reporting and amino acid localization. Consequentially, we increased the number of reportable ADPr peptides by 25% (liver) and 17% (spleen) by validation and the inclusion of lower confidence ADPr peptide spectra. This systematic annotation strategy will streamline future reporting of ADPr peptides that have been sequenced using any HCD/CID-based method.


Asunto(s)
Péptidos , Bazo , Adenosina Difosfato , Animales , Interferón gamma , Iones , Hígado , Ratones , Péptidos/química , Bazo/química
3.
J Biol Chem ; 293(26): 10202-10219, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29739851

RESUMEN

Structural characterization of glycosaminoglycans remains a challenge but is essential for determining structure-function relationships between glycosaminoglycans and the biomolecules with which they interact and for gaining insight into the biosynthesis of glycosaminoglycans. We have recently reported that xyloside-primed chondroitin/dermatan sulfate derived from a human breast carcinoma cell line, HCC70, has cytotoxic effects and shown that it differs in disaccharide composition from nontoxic chondroitin/dermatan sulfate derived from a human breast fibroblast cell line, CCD-1095Sk. To further investigate the structural requirements for the cytotoxic effect, we developed a novel LC-MS/MS approach based on reversed-phase dibutylamine ion-pairing chromatography and negative-mode higher-energy collision dissociation and used it in combination with cell growth studies and disaccharide fingerprinting. This strategy enabled detailed structural characterization of linkage regions, internal oligosaccharides, and nonreducing ends, revealing not only differences between xyloside-primed chondroitin/dermatan sulfate from HCC70 cells and CCD-1095Sk cells, but also sialylation of the linkage region and previously undescribed methylation and sulfation of the nonreducing ends. Although the xyloside-primed chondroitin/dermatan sulfate from HCC70 cells was less complex in terms of presence and distribution of iduronic acid than that from CCD-1095Sk cells, both glucuronic acid and iduronic acid appeared to be essential for the cytotoxic effect. Our data have moved us one step closer to understanding the structure of the cytotoxic chondroitin/dermatan sulfate from HCC70 cells primed on xylosides and demonstrate the suitability of the LC-MS/MS approach for structural characterization of glycosaminoglycans.


Asunto(s)
Glicosaminoglicanos/química , Glicosaminoglicanos/toxicidad , Glicósidos/química , Línea Celular Tumoral , Sulfatos de Condroitina/química , Cromatografía Liquida , Dermatán Sulfato/química , Disacáridos/análisis , Humanos , Espectrometría de Masas en Tándem
4.
Angew Chem Int Ed Engl ; 57(30): 9320-9324, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29742324

RESUMEN

Distinct structural changes of the α2,3/α2,6-sialic acid glycosidic linkages on glycoproteins are of importance in cancer biology, inflammatory diseases, and virus tropism. Current glycoproteomic methodologies are, however, not amenable toward high-throughput characterization of sialic acid isomers. To enable such assignments, a mass spectrometry method utilizing synthetic model glycopeptides for the analysis of oxonium ion intensity ratios was developed. This method was successfully applied in large-scale glycoproteomics, thus allowing the site-specific structural characterization of sialic acid isomers.


Asunto(s)
Proteómica , Ácidos Siálicos/química , Conformación de Carbohidratos , Cromatografía Liquida , Estereoisomerismo , Espectrometría de Masas en Tándem
5.
J Biol Chem ; 293(1): 379-389, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29138239

RESUMEN

Chondroitin sulfate proteoglycans (CSPGs) are important structural components of connective tissues in essentially all metazoan organisms. In vertebrates, CSPGs are involved also in more specialized processes such as neurogenesis and growth factor signaling. In invertebrates, however, knowledge of CSPGs core proteins and proteoglycan-related functions is relatively limited, even for Caenorhabditis elegans. This nematode produces large amounts of non-sulfated chondroitin in addition to low-sulfated chondroitin sulfate chains. So far, only nine core proteins (CPGs) have been identified, some of which have been shown to be involved in extracellular matrix formation. We recently introduced a protocol to characterize proteoglycan core proteins by identifying CS-glycopeptides with a combination of biochemical enrichment, enzymatic digestion, and nano-scale liquid chromatography MS/MS analysis. Here, we have used this protocol to map the chondroitin glycoproteome in C. elegans, resulting in the identification of 15 novel CPG proteins in addition to the nine previously established. Three of the newly identified CPGs displayed homology to vertebrate proteins. Bioinformatics analysis of the primary protein sequences revealed that the CPG proteins altogether contained 19 unique functional domains, including Kunitz and endostatin domains, suggesting direct involvement in protease inhibition and axonal migration, respectively. The analysis of the core protein domain organization revealed that all chondroitin attachment sites are located in unstructured regions. Our results suggest that CPGs display a much greater functional and structural heterogeneity than previously appreciated and indicate that specialized proteoglycan-mediated functions evolved early in metazoan evolution.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteoglicanos Tipo Condroitín Sulfato/aislamiento & purificación , Sulfatos de Condroitina/metabolismo , Cromatografía en Gel/métodos , Glicopéptidos/metabolismo , Proteoglicanos/metabolismo , Espectrometría de Masas en Tándem/métodos
6.
ACS Chem Biol ; 12(5): 1288-1296, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28294600

RESUMEN

Virus entry depends on biomolecular recognition at the surface of cell membranes. In the case of glycolipid receptors, these events are expected to be influenced by how the glycan epitope close to the membrane is presented to the virus. This presentation of membrane-associated glycans is more restricted than that of glycans in solution, particularly because of orientational constraints imposed on the glycolipid through its lateral interactions with other membrane lipids and proteins. We have developed and employed a total internal reflection fluorescence microscopy-based binding assay and a scheme for molecular dynamics (MD) membrane simulations to investigate the consequences of various glycan presentation effects. The system studied was histo-blood group antigen (HBGA) epitopes of membrane-bound glycosphingolipids (GSLs) derived from small intestinal epithelium of humans (type 1 chain) and dogs (type 2 chain) interacting with GII.4 norovirus-like particles. Our experimental results showed strong binding to all lipid-linked type 1 chain HBGAs but no or only weak binding to the corresponding type 2 chain HBGAs. This is in contrast to results derived from STD experiments with free HBGAs in solution where binding was observed for Lewis x. The MD data suggest that the strong binding to type 1 chain glycolipids was due to the well-exposed (1,2)-linked α-l-Fucp and (1,4)-linked α-l-Fucp residues, while the weaker binding or lack of binding to type 2 chain HBGAs was due to the very restricted accessibility of the (1,3)-linked α-l-Fucp residue when the glycolipid is embedded in a phospholipid membrane. Our results not only contribute to a general understanding of protein-carbohydrate interactions on model membrane surfaces, particularly in the context of virus binding, but also suggest a possible role of human intestinal GSLs as potential receptors for norovirus uptake.


Asunto(s)
Presentación de Antígeno/fisiología , Antígenos de Grupos Sanguíneos/inmunología , Glicoesfingolípidos/metabolismo , Norovirus/fisiología , Acoplamiento Viral , Animales , Perros , Humanos , Mucosa Intestinal , Simulación de Dinámica Molecular , Internalización del Virus
7.
J Am Soc Mass Spectrom ; 28(2): 229-241, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27873218

RESUMEN

Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl-O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides. Graphical Abstract ᅟ.


Asunto(s)
Sulfatos de Condroitina/química , Cromatografía Liquida/métodos , Glicopéptidos/química , Polisacáridos/química , Espectrometría de Masas en Tándem/métodos , Acetilgalactosamina/química , alfa-Globulinas/química , alfa-Globulinas/orina , Secuencia de Carbohidratos , Humanos , Ácido N-Acetilneuramínico/química , Fosforilación , Polisacáridos/análisis , Sodio/química
8.
Sci Rep ; 6: 34537, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694851

RESUMEN

Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.


Asunto(s)
Condroitina ABC Liasa/química , Sulfatos de Condroitina/química , Heparitina Sulfato/química , Proteoglicanos/química , Animales , Línea Celular Tumoral , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Ratones , Proteoglicanos/metabolismo
9.
J Proteome Res ; 15(8): 2826-40, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27399812

RESUMEN

Glycoproteomics has rapidly become an independent analytical platform bridging the fields of glycomics and proteomics to address site-specific protein glycosylation and its impact in biology. Current glycopeptide characterization relies on time-consuming manual interpretations and demands high levels of personal expertise. Efficient data interpretation constitutes one of the major challenges to be overcome before true high-throughput glycopeptide analysis can be achieved. The development of new glyco-related bioinformatics tools is thus of crucial importance to fulfill this goal. Here we present SweetNET: a data-oriented bioinformatics workflow for efficient analysis of hundreds of thousands of glycopeptide MS/MS-spectra. We have analyzed MS data sets from two separate glycopeptide enrichment protocols targeting sialylated glycopeptides and chondroitin sulfate linkage region glycopeptides, respectively. Molecular networking was performed to organize the glycopeptide MS/MS data based on spectral similarities. The combination of spectral clustering, oxonium ion intensity profiles, and precursor ion m/z shift distributions provided typical signatures for the initial assignment of different N-, O- and CS-glycopeptide classes and their respective glycoforms. These signatures were further used to guide database searches leading to the identification and validation of a large number of glycopeptide variants including novel deoxyhexose (fucose) modifications in the linkage region of chondroitin sulfate proteoglycans.


Asunto(s)
Biología Computacional/métodos , Glicopéptidos/análisis , Espectrometría de Masas en Tándem , Flujo de Trabajo , Sulfatos de Condroitina/metabolismo , Glicosilación , Ácido N-Acetilneuramínico/metabolismo , Proteómica/métodos
10.
J Phys Chem B ; 119(35): 11466-72, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26260011

RESUMEN

Many viruses interact with their host cells via glycosphingolipids (GSLs) and/or glycoproteins present on the outer cell membrane. This highly specific interaction includes virion attachment and detachment. The residence time determined by the detachment is particularly interesting, since it is directly related to internalization and infection as well as to virion egress and spreading. In an attempt to deepen the understanding of virion detachment kinetics, we have used total internal reflection fluorescence (TIRF) microscopy to probe the interaction between individual fluorescently labeled GSL-containing lipid vesicles and surface-bound virus-like particles (VLPs) of a norovirus genotype II.4 strain. The distribution of the VLP-vesicle residence time was investigated for seven naturally occurring GSLs, all of which are candidates for the not yet identified receptor(s) mediating norovirus entry into host cells. As expected for interactions involving multiple GSL binding sites at a viral capsid, the detachment kinetics displayed features typical for a broad activation-energy distribution for all GSLs. Detailed inspection of these distributions revealed significant differences among the different GSLs. The results are discussed in terms of strength of the interaction, vesicle size, as well as spatial distribution and clustering of GSLs in the vesicle membrane.


Asunto(s)
Cápside/química , Glicoesfingolípidos/química , Norovirus/química , Cinética , Membrana Dobles de Lípidos/química , Microscopía Fluorescente , Modelos Teóricos
11.
Clin Infect Dis ; 59(11): 1567-73, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25097083

RESUMEN

BACKGROUND: The live oral rotavirus (RV) vaccines have shown a reduced efficacy in Africa. Recent in vitro studies have shown binding of the RV surface protein (VP4) to histo-blood group antigens (HBGAs) in an RV genotype-dependent manner, suggesting them to be putative receptors for RV. The diversity of HBGA phenotypes in different ethnic populations, combined with prevalence/absence of specific RV genotypes, led us to hypothesize whether the genetic variations in HBGAs in a population limit susceptibility to certain RV genotypes, plausibly leading to reduced vaccine efficacy. METHODS: Association between HBGAs status and susceptibility to RV P genotypes was investigated in children in Burkina Faso and Nicaragua. In total, 242 children with diarrhea in Burkina Faso and Nicaragua were investigated, 93 of whom were RV positive. RESULTS: In Burkina Faso, the P[8] RV strains (n = 27) infected only Lewis- and secretor-positive children (27/27; P < .0001), but no Lewis-negative children. In contrast, the P[6] strains (n = 27) infected predominantly Lewis-negative children (n = 18; P < .0001) but also Lewis-positive children, irrespective of their secretor status. The results from Nicaragua confirmed that all P[8]-infected children (n = 22) were secretor Lewis positive. CONCLUSIONS: As VP4 of genotype P[8] is a component of current RV vaccines, our finding that Lewis-negative children are resistant to P[8] strains provides a plausible explanation for the reduced vaccine efficacy in populations with a high percentage of Lewis-negative individuals, such as in Africa. Furthermore, our findings provide a plausible explanation as to why P[6] RV strains are more common in Africa.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/genética , Antígenos del Grupo Sanguíneo de Lewis/genética , Infecciones por Rotavirus/virología , Rotavirus/genética , Burkina Faso/epidemiología , Preescolar , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Nicaragua/epidemiología , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/genética
12.
Virology ; 456-457: 364-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24889255

RESUMEN

Studies have suggested that the glycosphingolipid globoside (Gb4Cer) is a receptor for human parvovirus B19. Virus-like particles bind to Gb4Cer on thin-layer chromatograms, but a direct interaction between the virus and lipid membrane-associated Gb4Cer has been debated. Here, we characterized the binding of parvovirus B19 VP1/VP2 virus-like particles to glycosphingolipids (i) on thin-layer chromatograms (TLCs) and (ii) incorporated into supported lipid bilayers (SLBs) acting as cell-membrane mimics. The binding specificities of parvovirus B19 determined in the two systems were in good agreement; the VLP recognized both Gb4Cer and the Forssman glycosphingolipid on TLCs and in SLBs compatible with the role of Gb4Cer as a receptor for this virus.


Asunto(s)
Globósidos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Parvovirus B19 Humano/fisiología , Receptores Virales/metabolismo , Acoplamiento Viral , Proteínas de la Cápside/metabolismo , Virosomas/metabolismo
14.
Glycobiology ; 22(9): 1163-72, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22589081

RESUMEN

Human noroviruses cause recurrent epidemics of gastroenteritis known to be dominated by the clinically important GII.4 genotype which recognizes human Secretor gene-dependent ABH histo-blood group antigens (HBGAs) as attachment factors. There is increasing evidence that GII.4 noroviruses have undergone evolutionary changes to recognize Lewis antigens and non-Secretor saliva. In this study, we have investigated the possibilities of the Lewis α1,3/α1,4 fucoses as mediators of binding of GII.4 noroviruses to Lewis antigens. The study was carried out using molecular dynamics simulations of Lewis type-1 and type-2 chain HBGAs in complex with VA387 P domain dimers in explicit water. Based on the computer simulations, we suggest the possibility of two receptor binding modes for Lewis HBGAs: the "Secretor pose" with the Secretor Fucα1,2 in the binding site and the "Lewis pose" with the Lewis Fucα1,3/α1,4 residues in the binding site. This was further supported by an extensive GlyVicinity analysis of the Protein Data Bank with respect to the occurrence of the Lewis and Secretor poses in complexes of Lewis antigens with lectins and antibodies as well as GII norovirus strains. The Lewis pose can also explain the interactions of GII.4 norovirus strains with Le(x) and SLe(x) structures. Moreover, the present model suggests binding of complex branched polysaccharides, with the Lewis antigens at the nonreducing end, to P domain dimers of GII.4 strains. Our results are relevant for understanding the evolution of norovirus binding specificities and for in silico design of future antiviral therapeutics.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/química , Fucosa/química , Antígenos del Grupo Sanguíneo de Lewis/química , Norovirus/química , Proteínas Virales/química , Sistema del Grupo Sanguíneo ABO/metabolismo , Secuencia de Aminoácidos , Anticuerpos/química , Anticuerpos/metabolismo , Sitios de Unión , Secuencia de Carbohidratos , Bases de Datos de Proteínas , Fucosa/metabolismo , Humanos , Lectinas/química , Lectinas/metabolismo , Antígenos del Grupo Sanguíneo de Lewis/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Norovirus/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica , Receptores Virales/química , Receptores Virales/metabolismo , Estereoisomerismo , Proteínas Virales/metabolismo , Acoplamiento Viral
15.
J Comput Aided Mol Des ; 24(5): 423-31, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20407802

RESUMEN

Norovirus strains are known to cause recurring epidemics of winter vomiting disease. The crystal structure of the capsid protein of VA387, a representative of the clinically important GII.4 genocluster, was recently solved in complex with histo-blood group A- and B-trisaccharides. However, the VA387 strain is known to bind also to other natural carbohydrates for which detailed structural information of the complexes is not available. In this study we have computationally explored the fit of the VA387 with a set of naturally occurring carbohydrate ligands containing a terminal alpha1,2-linked fucose. MD simulations both with explicit and implicit solvent models indicate that type 1 and 3 extensions of the ABO-determinant including ALe(b) and BLe(b) pentasaccharides can be well accommodated in the site. Scoring with Glide XP indicates that the downstream extensions of the ABO-determinants give an increase in binding strength, although the alpha1,2-linked fucose is the single strongest interacting residue. An error was discovered in the geometry of the GalNAc-Gal moiety of the published crystal structure of the A-trisaccharide/VA387 complex. The present modeling of the complexes with histo-blood group A-active structures shows some contacts which provide insight into mutational data, explaining the involvement of I389 and Q331. Our results can be applicable in structure-based design of adhesion inhibitors of noroviruses.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/química , Sistema del Grupo Sanguíneo ABO/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Simulación por Computador , Norovirus/química , Norovirus/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Sitios de Unión , Secuencia de Carbohidratos , Humanos , Técnicas In Vitro , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Norovirus/patogenicidad , Unión Proteica , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...