Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21311, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954321

RESUMEN

The determination of volatile compounds is essential for the chemical characterisation of honey's aroma and its correlation to its sensory profile and botanical origin. The present study describes the development, optimization and validation of a new, simple and reliable method for the determination of volatile compounds in honey using headspace solid-phase microextraction combined with gas chromatography/mass spectrometry (HS-SPME-GC-MS). The optimization of the SPME conditions showed that the ratio of honey: water (2:1) and the incubation temperature (60 °C) are the most critical parameters. Gas chromatography was performed with medium polar Varian CP-Select 624 column and the experimental Retention Index for a number of compounds was determined as an additional identification feature for suspect analysis. The simultaneous use of four internal standards chlorobenzene, benzophenone, 2-pentanol and 4-methyl-2-pentanone and matrix matched calibration enhanced method accuracy achieving recoveries 73-114 % and repeatability ranging between 3.9 and 19 % relative standard deviations. Furthermore, the superiority of the HS-SPME to static head space technique was verified exhibiting four-to nine-fold higher sensitivity. Target and suspect screening were applied to 30 Greek honey samples and 53 volatile compounds belonging to different chemical classes, such as alkanes, aldehydes, ketones, alcohols, and esters were identified with quantified concentrations ranging between 3.1 µg kg-1 (Limonene) up to 20 mg kg-1 (Benzeneacetaldehyde). Among the new findings is the detection of Myrtenol in Greek pine honey and 2,3-butanediol in Greek oak honey. The developed analytical protocol can be a valuable tool in order to chemically characterize honey based on the volatile content.

2.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885766

RESUMEN

In this study, an overall survey regarding the determination of several bioactive compounds in olive fruit is presented. Two methodologies were developed, one UPLC-Q-TOF-MS method for the determination of olive fruit phenolic compounds and one HPLC-DAD methodology targeting the determination of pigments (chlorophylls and carotenoids), tocopherols (α-, ß, -γ, δ-) and squalene. Target and suspect screening workflows were developed for the thorough fingerprinting of the phenolic fraction of olives. Both methods were validated, presenting excellent performance characteristics, and can be used as reliable tools for the monitoring of bioactive compounds in olive fruit samples. The developed methodologies were utilized to chemical characterize the fruits of the Kolovi olive variety, originating from the island of Lesvos, North Aegean Region, Greece. Twenty-five phenolic compounds were identified and quantified in Kolovi olives with verbascoside, hydroxytyrosol, oleacein and oleomissional found in significantly high concentrations. Moreover, 12 new bioactive compounds were identified in the samples using an in-house suspect database. The results of pigments analysis suggested that Kolovi variety should be characterized as low pigmentation, while the tocopherol and squalene content was relatively high compared to other olive varieties. The characterization of Kolovi olive bioactive content highlighted the high nutritional and possible economic value of the Kolovi olive fruit.


Asunto(s)
Aldehídos/aislamiento & purificación , Glucósidos/química , Olea/química , Fenoles/química , Fenoles/aislamiento & purificación , Fitoquímicos/química , Aldehídos/química , Cromatografía Líquida de Alta Presión , Frutas/química , Glucósidos/aislamiento & purificación , Grecia , Iridoides/química , Iridoides/aislamiento & purificación , Aceite de Oliva/química , Aceite de Oliva/aislamiento & purificación , Alcohol Feniletílico/análogos & derivados , Fitoquímicos/aislamiento & purificación , Espectrometría de Masas en Tándem , Tocoferoles/química , Tocoferoles/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA