Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 35(9): 1391-1401, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39146513

RESUMEN

Bioluminescence (BL) generated by luciferase-coelenterazine (CTZ) reactions is broadly employed as an optical readout in bioassays and in vivo molecular imaging. In this study, we demonstrate a systematic approach to elucidate the luciferase-CTZ binding chemistry with a full set of regioisomeric CTZ analogs, where all the functional groups were regiochemically modified. When the chemical structures were categorized into Groups 1-6, the even-numbered Groups (2, 4, and 6) of the CTZ analogs are found to be exceptionally bright with NanoLuc enzyme. A CTZ analogue M2 was the brightest with NanoLuc and the reason was deciphered by a computational analysis of the binding modes. We also report that (i) the regioisomeric CTZ analogs collectively create unique intensity patterns according to each marine luciferase, (ii) the quantitative structure-activity relationship analysis revealed the roles of respective functional groups of CTZ analogs, and (iii) the regioisomeric CTZ analogs also exert red shifts of the BL spectra and color variation: that is, the λmax values are near 500 nm with NanoLuc, near 530 nm with ALuc16, and near 570 nm with RLuc86SG. The advantages of the regioisomeric CTZ analogs were finally demonstrated using (i) a dual-luciferase system with M2-specific NanoLuc and native CTZ-specific ALuc16, (ii) an estrogen activatable single-chain BL probe by imaging, and (iii) BL imaging of live mice bearing tumors expressing NanoLuc and RLuc8.6SG. This study is the first systematic approach to elucidate the regiochemistry in BL imaging studies. This study provides new insights into how CTZ analogs regiochemically work in BL reporter systems and guides the specific applications to molecular imaging.


Asunto(s)
Imidazoles , Luciferasas , Imagen Molecular , Pirazinas , Animales , Pirazinas/química , Imidazoles/química , Luciferasas/metabolismo , Luciferasas/química , Luciferasas/genética , Imagen Molecular/métodos , Ratones , Mediciones Luminiscentes/métodos , Humanos , Bioensayo/métodos , Estereoisomerismo , Relación Estructura-Actividad Cuantitativa
2.
Npj Imaging ; 2(1): 14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912527

RESUMEN

Positron emission tomography (PET), a cornerstone in cancer diagnosis and treatment monitoring, relies on the enhanced uptake of fluorodeoxyglucose ([18F]FDG) by cancer cells to highlight tumors and other malignancies. While instrumental in the clinical setting, the accuracy of [18F]FDG-PET is susceptible to metabolic changes introduced by radiation therapy. Specifically, radiation induces the formation of giant cells, whose metabolic characteristics and [18F]FDG uptake patterns are not fully understood. Through a novel single-cell gamma counting methodology, we characterized the [18F]FDG uptake of giant A549 and H1299 lung cancer cells that were induced by radiation, and found it to be considerably higher than that of their non-giant counterparts. This observation was further validated in tumor-bearing mice, which similarly demonstrated increased [18F]FDG uptake in radiation-induced giant cells. These findings underscore the metabolic implications of radiation-induced giant cells, as their enhanced [18F]FDG uptake could potentially obfuscate the interpretation of [18F]FDG-PET scans in patients who have recently undergone radiation therapy.

3.
Int J Mol Sci ; 24(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37240396

RESUMEN

The main aim of this study is to synthesize contrast microbubbles (MB) functionalized with engineered protein ligands using a microfluidic device to target breast cancer specific vascular B7-H3 receptor in vivo for diagnostic ultrasound imaging. We used a high-affinity affibody (ABY) selected against human/mouse B7-H3 receptor for engineering targeted MBs (TMBs). We introduced a C-terminal cysteine residue to this ABY ligand for facilitating site-specific conjugation to DSPE-PEG-2K-maleimide (M. Wt = 2.9416 kDa) phospholipid for MB formulation. We optimized the reaction conditions of bioconjugations and applied it for microfluidic based synthesis of TMBs using DSPE-PEG-ABY and DPPC liposomes (5:95 mole %). The binding affinity of TMBs to B7-H3 (MBB7-H3) was tested in vitro in MS1 endothelial cells expressing human B7-H3 (MS1B7-H3) by flow chamber assay, and by ex vivo in the mammary tumors of a transgenic mouse model (FVB/N-Tg (MMTV-PyMT)634Mul/J), expressing murine B7-H3 in the vascular endothelial cells by immunostaining analyses. We successfully optimized the conditions needed for generating TMBs using a microfluidic system. The synthesized MBs showed higher affinity to MS1 cells engineered to express higher level of hB7-H3, and in the endothelial cells of mouse tumor tissue upon injecting TMBs in a live animal. The average number (mean ± SD) of MBB7-H3 binding to MS1B7-H3 cells was estimated to be 354.4 ± 52.3 per field of view (FOV) compared to wild-type control cells (MS1WT; 36.2 ± 7.5/FOV). The non-targeted MBs did not show any selective binding affinity to both the cells (37.7 ± 7.8/FOV for MS1B7-H3 and 28.3 ± 6.7/FOV for MS1WT cells). The fluorescently labeled MBB7-H3 upon systemic injection in vivo co-localized to tumor vessels, expressing B7-H3 receptor, as validated by ex vivo immunofluorescence analyses. We have successfully synthesized a novel MBB7-H3 via microfluidic device, which allows us to produce on demand TMBs for clinical applications. This clinically translatable MBB7-H3 showed significant binding affinity to vascular endothelial cells expressing B7-H3 both in vitro and in vivo, which shows its potential for clinical translation as a molecular ultrasound contrast agent for human applications.


Asunto(s)
Neoplasias de la Mama , Receptores Histamínicos H3 , Ratones , Animales , Humanos , Femenino , Microburbujas , Células Endoteliales/metabolismo , Ultrasonografía/métodos , Ratones Transgénicos , Imagen Molecular/métodos , Medios de Contraste , Neoplasias de la Mama/patología , Dispositivos Laboratorio en un Chip
4.
Int J Radiat Oncol Biol Phys ; 116(4): 927-934, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36669541

RESUMEN

PURPOSE: Biology-guided radiation therapy (BgRT) uses real-time line-of-response data from on-board positron emission tomography (PET) detectors to guide beamlet delivery during therapeutic radiation. The current workflow requires 18F-fluorodeoxyglucose (FDG) administration daily before each treatment fraction. However, there are advantages to reducing the number of tracer injections by using a PET tracer with a longer decay time. In this context, we investigated 89Zr-panitumumab (89Zr-Pan), an antibody PET tracer with a half-life of 78 hours that can be imaged for up to 9 days using PET. METHODS AND MATERIALS: The BgRT workflow was evaluated preclinically in mouse colorectal cancer xenografts (HCT116) using small-animal positron emission tomography/computed tomography (PET/CT) for imaging and image-guided kilovoltage conformal irradiation for therapy. Mice (n = 5 per group) received 7 MBq of 89Zr-Pan as a single dose 2 weeks after tumor induction, with or without fractionated radiation therapy (RT; 6 × 6.6 Gy) to the tumor region. The mice were imaged longitudinally to assess the kinetics of the tracer over 9 days. PET images were then analyzed to determine the stability of the PET signal in irradiated tumors over time. RESULTS: Mice in the treatment group experienced complete tumor regression, whereas those in the control group were killed because of tumor burden. PET imaging of 89Zr-Pan showed well-delineated tumors with minimal background in both groups. On day 9 postinjection, tumor uptake of 89Zr-Pan was 7.2 ± 1.7 in the control group versus 5.2 ± 0.5 in the treatment group (mean percentage of injected dose per gram of tissue [%ID/g] ± SD; P = .07), both significantly higher than FDG uptake (1.1 ± 0.5 %ID/g) 1 hour postinjection. To assess BgRT feasibility, the clinical eligibility criteria was computed using human-equivalent uptake values that were extrapolated from preclinical PET data. Based on this semiquantitative analysis, BgRT may be feasible for 5 consecutive days after a single 740-MBq injection of 89Zr-Pan. CONCLUSIONS: This study indicates the potential of long-lived antibody-based PET tracers for guiding clinical BgRT.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Ratones , Animales , Panitumumab , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Biología
5.
Micromachines (Basel) ; 13(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36557516

RESUMEN

The targeted delivery of cancer immunotherapies has increased noticeably in recent years. Recent advancements in immunotherapy, particularly in blocking the immune checkpoints (ICs) axis, have shown favorable treatment outcomes for multiple types of cancer including melanoma and non-small-cell lung cancer (NSLC). Engineered micromachines, including microparticles, and nanoplatforms (organic and inorganic), functionalized with immune agonists can effectively deliver immune-targeting molecules to solid tumors. This review focuses on the nanomaterial-based strategies that have shown promise in identifying and targeting various immunological markers in the tumor microenvironment (TME) for cancer diagnosis and therapy. Nanomaterials-based cancer immunotherapy has improved treatment outcomes by triggering an immune response in the TME. Evaluating the expression levels of ICs in the TME also could potentially aid in diagnosing patients who would respond to IC blockade therapy. Detecting immunological checkpoints in the TME using noninvasive imaging systems via tailored nanosensors improves the identification of patient outcomes in immuno-oncology (IO). To enhance patient-specific analysis, lab-on-chip (LOC) technology is a rapid, cost-effective, and accurate way of recapitulating the TME. Such novel nanomaterial-based technologies have been of great interest for testing immunotherapies and assessing biomarkers. Finally, we provide a perspective on the developments in artificial intelligence tools to facilitate ICs-based nano theranostics toward cancer immunotherapy.

6.
Nat Nanotechnol ; 17(9): 1015-1022, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995855

RESUMEN

Current clinical brain tumour therapy practices are based on tumour resection and post-operative chemotherapy or X-ray radiation. Resection requires technically challenging open-skull surgeries that can lead to major neurological deficits and, in some cases, death. Treatments with X-ray and chemotherapy, on the other hand, cause major side-effects such as damage to surrounding normal brain tissues and other organs. Here we report the development of an integrated nanomedicine-bioelectronics brain-machine interface that enables continuous and on-demand treatment of brain tumours, without open-skull surgery and toxicological side-effects on other organs. Near-infrared surface plasmon characteristics of our gold nanostars enabled the precise treatment of deep brain tumours in freely behaving mice. Moreover, the nanostars' surface coating enabled their selective diffusion in tumour tissues after intratumoral administration, leading to the exclusive heating of tumours for treatment. This versatile remotely controlled and wireless method allows the adjustment of nanoparticles' photothermal strength, as well as power and wavelength of the therapeutic light, to target tumours in different anatomical locations within the brain.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Fotoquimioterapia , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Oro/uso terapéutico , Ratones , Nanomedicina Teranóstica
7.
J Control Release ; 346: 317-327, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35469983

RESUMEN

PD-L1 (programmed death-ligand 1) targeted therapies may be useful for several cancers. The use of non-invasive diagnostic and prognostic molecular imaging platforms could improve clinical assessment of PD-L1 tumor status during these therapies. Contrast enhanced ultrasound molecular imaging (CE-USMI) techniques may offer versatile and cost-effective ways to detect and quantify the expression levels of cellular targets in vivo. However, conventional use of microbubbles as a blood pool contrast agent for CE-USMI is limited to accessing intravascular biomarkers rather than reflecting the tumor molecular status. Using a microfluidic based reconstruction process we therefore developed ultra-stable nanobubbles (NBs) as a contrast agent for molecular imaging of vascular and extravascular cell surface markers. We then functionalized these NBs by covalently linking to nanobody (FN3hPD-L1) targeting human (h)PD-L1 to measure the expression of human PD-L1 in the tumor microenvironment (TME) in vivo. We showed the specific binding of hPD-L1 targeted NBs in cell culture, and in xenografted mouse models of hPD-L1 expressing CT26 tumors. CE-USMI of hPD-L1 in the TME in vivo showed ~3-fold increase in contrast signal compared to non-targeted NBs. Overall, in vivo use of CE-USMI with hPD-L1 targeted NBs has the potential for clinical translation and imaging of human cancers during immunotherapy, and for prognostic evaluation of patient response to PD-L1 targeted immunotherapy.


Asunto(s)
Medios de Contraste , Neoplasias , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Medios de Contraste/química , Modelos Animales de Enfermedad , Humanos , Ratones , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen
8.
Biosensors (Basel) ; 11(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34940257

RESUMEN

Recently, considerable interest has emerged in the development of biosensors to detect biomarkers and immune checkpoints to identify and measure cancer through liquid biopsies. The detection of cancer biomarkers from a small volume of blood is relatively fast compared to the gold standard of tissue biopsies. Traditional immuno-histochemistry (IHC) requires tissue samples obtained using invasive procedures and specific expertise as well as sophisticated instruments. Furthermore, the turnaround for IHC assays is usually several days. To overcome these challenges, on-demand biosensor-based assays were developed to provide more immediate prognostic information for clinicians. Novel rapid, highly precise, and sensitive approaches have been under investigation using physical and biochemical methods to sense biomarkers. Additionally, interest in understanding immune checkpoints has facilitated the rapid detection of cancer prognosis from liquid biopsies. Typically, these devices combine various classes of detectors with digital outputs for the measurement of soluble cancer or immune checkpoint (IC) markers from liquid biopsy samples. These sensor devices have two key advantages: (a) a small volume of blood drawn from the patient is sufficient for analysis, and (b) it could aid physicians in quickly selecting and deciding the appropriate therapy regime for the patients (e.g., immune checkpoint blockade (ICB) therapy). In this review, we will provide updates on potential cancer markers, various biosensors in cancer diagnosis, and the corresponding limits of detection, while focusing on biosensor development for IC marker detection.


Asunto(s)
Técnicas Biosensibles , Biopsia Líquida , Neoplasias , Biomarcadores de Tumor , Detección Precoz del Cáncer , Humanos , Neoplasias/diagnóstico
9.
Cancers (Basel) ; 13(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34439132

RESUMEN

Glypican-3 (GPC3) is an attractive diagnostic marker for hepatocellular carcinoma (HCC). We previously reported the potential of an 89Zr-labeled murine anti-GPC3 antibody (clone 1G12) for immunoPET imaging of HCC in orthotopic patient-derived xenograft (PDX) mouse models. We now humanized the murine antibody by complementarity determining region (CDR) grafting, to allow its clinical translation for human use. The engineered humanized anti-GPC3 antibody, clone H3K3, retained comparable binding affinity and specificity to human GPC3. H3K3 was conjugated with desferrioxamine (Df) and radiolabeled with 89Zr to produce the PET/CT tracer 89Zr-Df-H3K3. When injected into GPC3-expressing orthotopic HCC PDX in NOD SCID Gamma (NSG) mice, 89Zr-Df-H3K3 showed specific high uptake into the orthotopic PDX and minimal, non-specific uptake into the non-tumor bearing liver. Specificity was demonstrated by significantly higher uptake of 89Zr-Df-H3K3 into the non-blocked PDX mice, compared with the blocked PDX mice (which received prior injection of 100 mg of unlabeled H3K3). Region of interest (ROI) analysis showed that the PDX/non-tumor liver ratio was highest (mean ± SD: 3.4 ± 0.31) at 168 h post injection; this ratio was consistent with biodistribution studies at the same time point. Thus, our humanized anti-GPC3 antibody, H3K3, shows encouraging potential for use as an immunoPET tracer for diagnostic imaging of HCC patients.

10.
Cancers (Basel) ; 13(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068775

RESUMEN

The biological impact of exogenous, alternating electric fields (AEFs) and direct-current electric fields has a long history of study, ranging from effects on embryonic development to influences on wound healing. In this article, we focus on the application of electric fields for the treatment of cancers. In particular, we outline the clinical impact of tumor treating fields (TTFields), a form of AEFs, on the treatment of cancers such as glioblastoma and mesothelioma. We provide an overview of the standard mechanism of action of TTFields, namely, the capability for AEFs (e.g., TTFields) to disrupt the formation and segregation of the mitotic spindle in actively dividing cells. Though this standard mechanism explains a large part of TTFields' action, it is by no means complete. The standard theory does not account for exogenously applied AEFs' influence directly upon DNA nor upon their capacity to alter the functionality and permeability of cancer cell membranes. This review summarizes the current literature to provide a more comprehensive understanding of AEFs' actions on cell membranes. It gives an overview of three mechanistic models that may explain the more recent observations into AEFs' effects: the voltage-gated ion channel, bioelectrorheological, and electroporation models. Inconsistencies were noted in both effective frequency range and field strength between TTFields versus all three proposed models. We addressed these discrepancies through theoretical investigations into the inhomogeneities of electric fields on cellular membranes as a function of disease state, external microenvironment, and tissue or cellular organization. Lastly, future experimental strategies to validate these findings are outlined. Clinical benefits are inevitably forthcoming.

11.
Clin Cancer Res ; 27(7): 1932-1940, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408249

RESUMEN

PURPOSE: Therapeutic checkpoint inhibitors on tumor-infiltrating lymphocytes (TIL) are being increasingly utilized in the clinic. The T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is an inhibitory receptor expressed on T and natural killer cells. The TIGIT signaling pathway is an alternative target for checkpoint blockade to current PD-1/CTLA-4 strategies. Elevated TIGIT expression in the tumor microenvironment correlates with better therapeutic responses to anti-TIGIT therapies in preclinical models. Therefore, quantifying TIGIT expression in tumors is necessary for determining whether a patient may respond to anti-TIGIT therapy. PET imaging of TIGIT expression on TILs can therefore aid diagnosis and in monitoring therapeutic responses. EXPERIMENTAL DESIGN: Antibody-based TIGIT imaging radiotracers were developed with the PET radionuclides copper-64 (64Cu) and zirconium-89 (89Zr). In vitro characterization of the imaging probes was followed by in vivo evaluation in both xenografts and syngeneic tumor models in mouse. RESULTS: Two anti-TIGIT probes were developed and exhibited immunoreactivity of >72%, serum stability of >95%, and specificity for TIGIT with both mouse TIGIT-expressing HeLa cells and ex vivo-activated primary splenocytes. In vivo, the 89Zr-labeled probe demonstrated superior contrast than the 64Cu probe due to 89Zr's longer half-life matching the TIGIT antibody's pharmacokinetics. The 89Zr probe was used to quantify TIGIT expression on TILs in B16 melanoma in immunocompetent mice and confirmed by ex vivo flow cytometry. CONCLUSIONS: This study develops and validates novel TIGIT-specific 64Cu and 89Zr PET probes for quantifying TIGIT expression on TILs for diagnosis of patient selection for anti-TIGIT therapies.


Asunto(s)
Linfocitos Infiltrantes de Tumor/química , Tomografía de Emisión de Positrones/métodos , Receptores Inmunológicos/análisis , Animales , Anticuerpos Monoclonales/farmacocinética , Línea Celular Tumoral , Femenino , Humanos , Marcaje Isotópico , Melanoma Experimental/química , Ratones , Ratones Endogámicos C57BL , Receptores Inmunológicos/antagonistas & inhibidores , Microambiente Tumoral
12.
Mol Imaging ; 19: 1536012120939398, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33104454

RESUMEN

An antigen binding fragment (BFab) derived from a tumor-associated mucin 1-sialoglycotope antigen (CA6) targeting antibody (huDS6) was engineered. We synthesized a companion diagnostic positron emission tomography (PET) tracer by radiolabeling BFab with [64Cu] to measure CA6 expression on cancer tissues prior to anti-human CA6 (huDS6-DM4 antibody-drug conjugate) therapy for ovarian and breast cancer patients. After chemotherapy, the ovarian patient received PET scan with 18F-2-fluoro-2-deoxyglucose ([18F]FDG: 10 mCi), followed by [64Cu]-DOTA-BFab ([64Cu]BFab; 5.5 mCi) 1 week later for PET scanning of CA6 expression and subsequent surgery. The breast cancer patient was treated with chemotherapy before primary tumor resection and subsequent [18F]FDG-PET scan. 4 weeks later the patient received of [64Cu]BFab (11.7 mCi) for CA6 PET scan. Whole body [18F]FDG-PET of the breast cancer patient indicated FDG-avid tumor metastases to the liver, bilateral hila and thoracic spine, but no uptake was observed for the ovarian patient. Each patient was also imaged by PET/CT with [64Cu]BFab at 1 and 24 hours after tracer administration. The [64Cu]BFab tracer was well tolerated by both patients without adverse effects, and no significant tracer uptake was observed in both patients. Immunohistochemistry (IHC) data indicated CA6 expressions were weak to intermediate and matched with the [64Cu]BFab-PET signals.


Asunto(s)
Neoplasias de la Mama , Inmunoconjugados , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Fluorodesoxiglucosa F18 , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiofármacos
13.
Q J Nucl Med Mol Imaging ; 64(4): 356-363, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33045821

RESUMEN

Positron emission tomography (PET) is a growing non-invasive diagnostic and molecular imaging tool in nuclear medicine, that is used to identify several diseases including cancer. The immunoPET probe is made up of monoclonal antibodies (mAbs) or its fragments or similar molecules that tagged with positron radioisotopes (68Ga, 64Cu, 89Zr) bound together by a bifunctional chelator (BFC). This probe is designed to identify a specific disease. Currently, several immunoPET probes are being developed for preclinical as well as for clinical applications. These studies are showing promising results, both in preclinical and patients, using mostly 64Cu, 89Zr isotopes. This review elucidates the 64Cu based immunoPET applications, their pipelines and the emerging scope of this technique within the nuclear medicine and molecular imaging clinics from bench to bedside. Recently, immunoPET research have sharply increased especially after a big surge in approval of oncology antibodies by the FDA for immune checkpoint-blockade cancer immunotherapies. Currently, preclinical to clinical translations of immunoPET has several challenges, including designing probes, choice of radioisotopes, selection of stable BFC, and size of antibody and its tracer kinetics. All these obstacles will be addressed eventually by improving PET scanner sensitivity, designing appropriate size of imaging probe, and combining immunoPET with specific targeting antibodies. These improvements should contribute to the immunoPET becoming more applicable in clinics, which, in turn, will provide critical information for correct patient selection, for right dosing, and for the right time/staging of treatment.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Radioisótopos de Cobre/química , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radiofármacos/química , Humanos , Inmunoterapia , Imagen Molecular , Terapia Molecular Dirigida , Neoplasias/inmunología , Tomografía de Emisión de Positrones , Coloración y Etiquetado , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
14.
ACS Nano ; 14(5): 5818-5835, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32347709

RESUMEN

Staphylococcus aureus (S. aureus) is a highly pathogenic facultative anaerobe that in some instances resides as an intracellular bacterium within macrophages and cancer cells. This pathogen can establish secondary infection foci, resulting in recurrent systemic infections that are difficult to treat using systemic antibiotics. Here, we use reconstructed apoptotic bodies (ReApoBds) derived from cancer cells as "nano decoys" to deliver vancomycin intracellularly to kill S. aureus by targeting inherent "eat me" signaling of ApoBds. We prepared ReApoBds from different cancer cells (SKBR3, MDA-MB-231, HepG2, U87-MG, and LN229) and used them for vancomycin delivery. Physicochemical characterization showed ReApoBds size ranges from 80 to 150 nm and vancomycin encapsulation efficiency of 60 ± 2.56%. We demonstrate that the loaded vancomycin was able to kill intracellular S. aureus efficiently in an in vitro model of S. aureus infected RAW-264.7 macrophage cells, and U87-MG (p53-wt) and LN229 (p53-mt) cancer cells, compared to free-vancomycin treatment (P < 0.001). The vancomycin loaded ReApoBds treatment in S. aureus infected macrophages showed a two-log-order higher CFU reduction than the free-vancomycin treatment group. In vivo studies revealed that ReApoBds can specifically target macrophages and cancer cells. Vancomycin loaded ReApoBds have the potential to kill intracellular S. aureus infection in vivo in macrophages and cancer cells.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Macrófagos , Ratones , Pruebas de Sensibilidad Microbiana , Neoplasias/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Vancomicina/farmacología
15.
Chem Commun (Camb) ; 56(2): 281-284, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31807738

RESUMEN

Bioluminescence resonance energy transfer (BRET) is a commonly used assay system for studying protein-protein interactions and protein folding in vivo. Conventional BRET systems have solely depended on an overlap of the energy donor and acceptor spectra. In this study, we engineered a conceptually unique ligand-activatable BRET system (termed BRET9), where a full-length Artificial Luciferase variant 23 (ALuc23), acting as the energy donor, is sandwiched between a protein pair of interest, FRB and FKBP12, and linked to a fluorescent protein as the energy acceptor. A specific ligand, rapamycin, then activates inter- and intramolecular interactions of FRB and FKBP12, which develop molecular strain in the sandwiched ALuc23 to accelerate further folding. We found that this system greatly enhanced both the total bioluminescence spectrum and the BRET signal in the far-red (FR) region. We characterized the molecular construct by studying 18 different designs categorized into four groups. The best BRET system design allowed an approximately 5-fold enhancement of the bioluminescence intensities in the FR region. This new BRET system provides a robust ligand-activatable platform that efficiently reports FR bioluminescence signals in cells and living animal models.


Asunto(s)
Luciferasas/química , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1A de Unión a Tacrolimus/metabolismo , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Línea Celular Tumoral , Humanos , Ligandos , Límite de Detección , Luciferasas/genética , Proteínas Luminiscentes/química , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Unión Proteica , Sirolimus/química , Sirolimus/metabolismo
16.
Nat Commun ; 10(1): 4673, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31611594

RESUMEN

Advances in precision molecular imaging promise to transform our ability to detect, diagnose and treat disease. Here, we describe the engineering and validation of a new cystine knot peptide (knottin) that selectively recognizes human integrin αvß6 with single-digit nanomolar affinity. We solve its 3D structure by NMR and x-ray crystallography and validate leads with 3 different radiolabels in pre-clinical models of cancer. We evaluate the lead tracer's safety, biodistribution and pharmacokinetics in healthy human volunteers, and show its ability to detect multiple cancers (pancreatic, cervical and lung) in patients at two study locations. Additionally, we demonstrate that the knottin PET tracers can also detect fibrotic lung disease in idiopathic pulmonary fibrosis patients. Our results indicate that these cystine knot PET tracers may have potential utility in multiple disease states that are associated with upregulation of integrin αvß6.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Fibrosis Pulmonar Idiopática/diagnóstico , Integrinas/metabolismo , Neoplasias/diagnóstico , Cristalografía por Rayos X , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
17.
Protein Eng Des Sel ; 32(5): 231-240, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31612217

RESUMEN

The programmed death-ligand 1 (PD-L1) is a major checkpoint protein that helps cancer cells evade the immune system. A non-invasive imaging agent with rapid clearance rate would be an ideal tool to predict and monitor the efficacy of anti-PD-L1 therapy. The aim of this research was to engineer a subnanomolar, high-affinity fibronectin type 3 domain (FN3)-based small binder targeted against human PD-L1 (hPD-L1) present on tumor cells. A naive yeast G4 library containing the FN3 gene with three binding loop sequences was used to isolate high-affinity binders targeted to purified full-length hPD-L1. The selected binder clones displayed several mutations in the loop regions of the FN3 domain. One unique clone (FN3hPD-L1-01) with a 6x His-tag at the C-terminus had a protein yield of >5 mg/L and a protein mass of 12 kDa. In vitro binding assays on six different human cancer cell lines (MDA-MB-231, DLD1, U87, 293 T, Raji and Jurkat) and murine CT26 colon carcinoma cells stably expressing hPD-L1 showed that CT26/hPD-L1 cells had the highest expression of hPD-L1 in both basal and IFN-γ-induced states, with a binding affinity of 2.38 ± 0.26 nM for FN3hPD-L1-01. The binding ability of FN3hPD-L1-01 was further confirmed by immunofluorescence staining on ex vivo CT26/hPD-L1 tumors sections. The FN3hPD-L1-01 binder represents a novel, small, high-affinity binder for imaging hPD-L1 expression on tumor cells and would aid in earlier imaging of tumors. Future clinical validation studies of the labeled FN3hPD-L1 binder(s) have the potential to monitor immune checkpoint inhibitors therapy and predict responders.


Asunto(s)
Antígeno B7-H1/química , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Ingeniería de Proteínas , Animales , Humanos , Células Jurkat , Ratones , Dominios Proteicos
18.
Methods Mol Biol ; 2033: 301-313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31332762

RESUMEN

Bioconjugation of biologically useful proteins is in great demand (e.g., conjugation to biotins, metal chelators, and drug carriers to target specific tissues for both in vitro and in vivo use). These conjugates provide widespread opportunities for various biological and biomedical applications. Evolving state-of-the-art protein conjugation strategies have led to the development of many affinity ligands, including for cancer imaging and diagnosis. However, to achieve the desirable protein conjugates, there are many challenges that remain to be addressed in order to obtain a reproducible procedure for all proteins and ligands. These include a control over the protein modification and the efficiency of the conjugation while retaining the original biological protein affinity postmodification. Here we present detailed conjugation methods for the human fibronectin tenth type III domain (FN3) protein scaffold for use in preclinical PET imaging. More specifically, this chapter provides detailed methods to produce a FN3 and a FN3-chelator-conjugate, its labeling with the radionuclide 64-Cu, and its use for noninvasive PET imaging in mice.


Asunto(s)
Portadores de Fármacos/química , Dominio de Fibronectina del Tipo III/genética , Imagen Molecular/métodos , Neoplasias/diagnóstico , Animales , Biotina/química , Línea Celular Tumoral , Quelantes/química , Radioisótopos de Cobre/química , Humanos , Ligandos , Ratones , Neoplasias/genética
19.
Theranostics ; 9(9): 2646-2661, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131059

RESUMEN

Background: Bioluminescence imaging (BLI) is one of the most widely used optical platforms in molecular imaging, but it suffers from severe tissue attenuation and autoluminescence in vivo. Methods: Here, we developed a novel BLI platform on the basis of bioluminescence resonance energy transfer (BRET) for achieving a ~300 nm blue-to-near infrared shift of the emission (NIR-BRET) by synthesizing an array of 18 novel coelenterazine (CTZ) derivatives, named "Bottle Blue (BBlue)" and a unique iRFP-linked RLuc8.6-535SG fusion protein as a probe. Results: The best NIR-BRET was achieved by tuning the emission peaks of the CTZ derivatives to a Soret band of the iRFP. In mammalian cells, BBlue2.3, one of the CTZ derivatives, emits light that is ~50-fold brighter than DBlueC when combined with RLuc8.6-535SG, which shows stable BL kinetics. When we used a caged version of BBLue2.3, it showed a BL half decay time of over 60 minutes while maintaining the higher signal sensitivity. This NIR BL is sufficiently brighter to be used for imaging live mammalian cells at single cell level, and also for imaging metastases in deep tissues in live mice without generating considerable autoluminescence. A single-chain probe developed based on this BLI platform allowed us to sensitively image ligand antagonist-specific activation of estrogen receptor in the NIR region. Conclusion: This unique optical platform provides the brightest NIR BLI template that can be used for imaging a diverse group of cellular events in living subjects including protein‒protein interactions and cancer metastasis.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Transferencia Resonante de Energía de Fluorescencia/métodos , Imidazoles/química , Neoplasias Hepáticas/diagnóstico por imagen , Sustancias Luminiscentes/química , Neoplasias Pulmonares/diagnóstico por imagen , Imagen Molecular/métodos , Pirazinas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Neoplasias de la Mama/patología , Células COS , Chlorocebus aethiops , Femenino , Células HeLa , Xenoinjertos , Humanos , Neoplasias Hepáticas/secundario , Luciferasas/análisis , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de la Célula Individual/métodos , Proteína Fluorescente Roja
20.
Clin Cancer Res ; 25(6): 1774-1785, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30373750

RESUMEN

PURPOSE: To design and evaluate a small engineered protein binder targeting human programmed death-1 ligand (hPD-L1) in vivo for PET imaging in four mouse tumor models, and in situ in human cancer specimens.Experimental Design: The hPD-L1 protein binder, FN3hPD-L1, was engineered using a 12-kDa human fibronectin type-3 domain (FN3) scaffold. The binder's affinity was assayed in CT26 mouse colon carcinoma cells stably expressing hPD-L1 (CT26/hPD-L1). 64Cu-FN3hPD-L1 was assayed for purity, specific activity, and immunoreactivity. Four groups of NSG mice (n = 3-5/group) were imaged with 64Cu-FN3hPD-L1 PET imaging (1-24 hours postinjection of 3.7 MBq/7 µg of Do-FN3 in 200 µL PBS): Nod SCID Gamma (NSG) mice bearing (i) syngeneic CT26/hPD-L1tumors, (ii) CT26/hPD-L1 tumors blocked (blk) by preinjected nonradioactive FN3hPD-L1 binder, (iii) hPD-L1-negative Raji xenografts, and (iv) MDA-MB-231 xenografts. The FN3hPD-L1 binder staining was evaluated against validated hPD-L1 antibodies by immunostaining in human cancer specimens. RESULTS: FN3hPD-L1 bound hPD-L1 with 1.4 ± 0.3 nmol/L affinity in CT26/hPD-L1 cells. 64Cu-FN3hPD-L1 radiotracer showed >70% yield and >95% purity. 64Cu-FN3hPD-L1 PET imaging of mice bearing CT26/hPD-L1 tumors showed tumor-to-muscle ratios of 5.6 ± 0.9 and 13.1 ± 2.3 at 1 and 4 hours postinjection, respectively. The FN3hPD-L1 binder detected hPD-L1 expression in human tissues with known hPD-L1 expression status based on two validated antibodies. CONCLUSIONS: The 64Cu-FN3hPD-L1 radiotracer represents a novel, small, and high-affinity binder for imaging hPD-L1 in tumors. Our data support further exploration and clinical translation of this binder for noninvasive identification of cancer patients who may respond to immune checkpoint blockade therapies.


Asunto(s)
Antígeno B7-H1/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/administración & dosificación , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Adulto , Anciano , Animales , Antígeno B7-H1/inmunología , Línea Celular Tumoral/trasplante , Radioisótopos de Cobre/administración & dosificación , Radioisótopos de Cobre/química , Modelos Animales de Enfermedad , Femenino , Dominio de Fibronectina del Tipo III/genética , Humanos , Masculino , Ratones , Sondas Moleculares/química , Sondas Moleculares/genética , Neoplasias/patología , Unión Proteica , Ingeniería de Proteínas , Radiofármacos/administración & dosificación , Radiofármacos/química , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA