Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Int J Biol Macromol ; : 132898, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38844280

This study explored the photocatalytic hydrogen evolution reaction (HER) using novel biohydrogel composites comprising chitosan, and a photocatalyst consisting in TiO2 P25 decorated with Au and/or Cu mono- and bimetallic nanoparticles (NPs) to boost its optical and catalytic properties. Low loads of Cu and Au (1 mol%) were incorporated onto TiO2 via a green photodeposition methodology. Characterization techniques confirmed the incorporation of decoration metals as well as improvements in the light absorption properties in the visible light interval (λ > 390 nm) and electron transfer capability of the semiconductors. Thereafter, Au and/or Cu NP-supported TiO2 were incorporated into chitosan-based physically crosslinked hydrogels revealing significant interactions between chitosan functional groups (hydroxyls, amines and amides) with the NPs to ensure its encapsulation. These materials were evaluated as photocatalysts for the HER using water and methanol mixtures under simulated sunlight and visible light irradiation. Sample CuAuTiO2/ChTPP exhibited a maximum hydrogen generation of 1790 µmol g-1 h-1 under simulated sunlight irradiation, almost 12-folds higher compared with TiO2/ChTPP. Also, the nanocomposites revealed a similar tendency under visible light with a maximum hydrogen production of 590 µmol g-1 h-1. These results agree with the efficiency of photoinduced charge separation revealed by transient photocurrent and EIS.

2.
ACS Catal ; 14(9): 6470-6487, 2024 May 03.
Article En | MEDLINE | ID: mdl-38721381

Solar-assisted CO2 conversion into fuels and chemical products involves a range of technologies aimed at driving industrial decarbonization methods. In this work, we report on the development of a series of multifunctional metal-organic frameworks (MOFs) based on nitro- or amino-functionalized UiO-66(M) (M: Zr or Zr/Ti) supported RuOx NPs as photocatalysts, having different energy band level diagrams, for CO2 hydrogenation under simulated concentrated sunlight irradiation. RuOx(1 wt %; 2.2 ± 0.9 nm)@UiO-66(Zr/Ti)-NO2 was found to be a reusable photocatalyst, to be selective for CO2 methanation (5.03 mmol g-1 after 22 h;, apparent quantum yield at 350, 400, and 600 nm of 1.67, 0.25, and 0.01%, respectively), and to show about 3-6 times activity compared with previous investigations. The photocatalysts were characterized by advanced spectroscopic techniques like femto- and nanosecond transient absorption, spin electron resonance, and photoluminescence spectroscopies together with (photo)electrochemical measurements. The photocatalytic CO2 methanation mechanism was assessed by operando FTIR spectroscopy. The results indicate that the most active photocatalyst operates under a dual photochemical and photothermal mechanism. This investigation shows the potential of multifunctional MOFs as photocatalysts for solar-driven CO2 recycling.

3.
Angew Chem Int Ed Engl ; : e202402973, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644341

Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.

4.
ChemSusChem ; : e202400062, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38427722

Developing sustainable cost-effective strategies for valorization of field-spent granular activated carbon (s-GAC) from industrial water treatment has gained much interest. Here, we report a cost-effective strategy for the regeneration of s-GAC as an adsorbent in a large-scale drinking water treatment plant and used as an efficient and durable ozonation catalyst in water. To achieve this, a series of samples is prepared by subjecting s-GAC to thermally controlled combustion treatments with and without pyrolysis. The catalytic performance of the optimized sample is evaluated for oxalic acid degradation as the model pollutant under batch (>15 h) and continuous flow operations (>200 h). The partially deactivated catalyst upon reuse is restored by thermal treatment. Electron paramagnetic resonance and selective quenching experiments show the formation of singlet oxygen (1O2) during catalytic ozonation. The GAC-ozonation catalyst is efficient to minimize the formation of chlorinated disinfection by-products like trihalomethanes and haloacetic acids in an urban wastewater effluent.

5.
Angew Chem Int Ed Engl ; 63(3): e202311241, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37815860

Large scale production of green CH3 OH obtained from CO2 and green H2 is a highly wanted process due to the role of CH3 OH as H2 /energy carrier and for producing chemicals. Starting with a short summary of the advantages of metal-organic frameworks (MOFs) as catalysts in liquid-phase reactions, the present article highlights the opportunities that MOFs may offer also for some gas-phase reactions, particularly for the selective CO2 hydrogenation to CH3 OH. It is commented that there is a temperature compatibility window that combines the thermal stability of some MOFs with the temperature required in the CO2 hydrogenation to CH3 OH that frequently ranges from 250 to 300 °C. The existing literature in this area is briefly organized according to the role of MOF as providing the active sites or as support of active metal nanoparticles (NPs). Emphasis is made to show how the flexibility in design and synthesis of MOFs can be used to enhance the catalytic activity by adjusting the composition of the nodes and the structure of the linkers. The influence of structural defects and material crystallinity, as well as the role that should play theoretical calculations in models have also been highlighted.

6.
Molecules ; 28(15)2023 Aug 04.
Article En | MEDLINE | ID: mdl-37570847

Synthesizing metal-organic frameworks (MOFs) composites with a controlled morphology is an important requirement to access materials of desired patterning and composition. Since the last decade, MOF growth from sacrificial metal oxide layer is increasingly developed as it represents an efficient pathway to functionalize a large number of substrates. In this study, porphyrin-based Al-PMOF thin films were grown on conductive transparent oxide substrates from sacrificial layers of ALD-deposited alumina oxide. The control of the solvent composition and the number of atomic layer deposition (ALD) cycles allow us to tune the crystallinity, morphology and thickness of the produced thin films. Photophysical studies evidence that Al-PMOF thin films present light absorption and emission properties governed by the porphyrinic linker, without any quenching upon increasing the film thickness. Al-PMOF thin films obtained through this methodology present a remarkably high optical quality both in terms of transparency and coverage. The porosity of the samples is demonstrated by ellipsometry and used for Zn(II) insertion inside the MOF thin film. The multifunctional transparent, porous and luminescent thin film grown on fluorine-doped tin oxide (FTO) is used as an electrode capable of photoinduced charge separation upon simulated sunlight irradiation.

7.
Chem Sci ; 14(13): 3451-3461, 2023 Mar 29.
Article En | MEDLINE | ID: mdl-37006681

The development of MOF-based efficient and reusable catalysts for hydrogen production under simulated sunlight irradiation, especially through overall water splitting, remains challenging. This is mainly due to either the inappropriate optical features or poor chemical stability of the given MOFs. Room temperature synthesis (RTS) of tetravalent MOFs is a promising strategy to design robust MOFs and their related (nano)composites. By employing these mild conditions, herein, we report for the first time that RTS leads to the efficient formation of highly redox active Ce(iv)-MOFs that are inaccessible at elevated temperatures. Consequently, not only highly crystalline Ce-UiO-66-NH2 is synthesized, but also many other derivatives and topologies (8 and 6-connected phases) without compromise in space-time yield. Their photocatalytic HER and OER activities under simulated sunlight irradiation are in good agreement with their energy level band diagrams: Ce-UiO-66-NH2 and Ce-UiO-66-NO2 are the most active photocatalysts for the HER and OER, respectively, with a higher activity than other metal-based UiO-type MOFs. Combining Ce-UiO-66-NH2 with supported Pt NPs results finally in one of the most active and reusable photocatalysts for overall water splitting into H2 and O2 under simulated sunlight irradiation, due to its efficient photoinduced charge separation evidenced by laser flash photolysis and photoluminescence spectroscopies.

8.
J Am Chem Soc ; 2023 Jan 23.
Article En | MEDLINE | ID: mdl-36689481

Compared to indirect framework modification, synthetic control of cluster composition can be used to gain direct access to catalytic activities exclusive of specific metal combinations. We demonstrate this concept by testing the aminolysis of epoxides with a family of isostructural mesoporous frameworks featuring five combinations of homometallic and heterobimetallic metal-oxo trimers (Fe3, Ti3, TiFe2, TiCo2, and TiNi2). Only TiFe2 nodes display activities comparable to benchmark catalysts based on grafting of strong acids, which here originate from the combination of Lewis Ti4+ and Brønsted Fe3+-OH acid sites. The applicability of MUV-101(Fe) to the synthesis of ß-amino alcohols is demonstrated with a scope that also includes the gram scale synthesis of propranolol, a natural ß-blocker listed as an essential medicine by the World Health Organization, with excellent yield and selectivity.

9.
Chem Rev ; 123(1): 445-490, 2023 01 11.
Article En | MEDLINE | ID: mdl-36503233

Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.


Metal-Organic Frameworks , Sunlight , Water , Photochemical Processes , Light
10.
Nanomaterials (Basel) ; 12(21)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36364583

There is an increasing interest in developing cost-effective technologies to produce hydrogen from sustainable resources. Herein we show a comprehensive study on the use of metal-organic frameworks (MOFs) as heterogeneous photocatalysts for H2 generation from photoreforming of glycerol aqueous solutions under simulated sunlight irradiation. The list of materials employed in this study include some of the benchmark Zr-MOFs such as UiO-66(Zr)-X (X: H, NO2, NH2) as well as MIL-125(Ti)-NH2 as the reference Ti-MOF. Among these solids, UiO-66(Zr)-NH2 exhibits the highest photocatalytic H2 production, and this observation is attributed to its adequate energy level. The photocatalytic activity of UiO-66(Zr)-NH2 can be increased by deposition of small Pt NPs as the reference noble metal co-catalyst within the MOF network. This photocatalyst is effectively used for H2 generation at least for 70 h without loss of activity. The crystallinity of MOF and Pt particle size were maintained as revealed by powder X-ray diffraction and transmission electron microscopy measurements, respectively. Evidence in support of the occurrence of photoinduced charge separation with Pt@UiO-66(Zr)-NH2 is provided from transient absorption and photoluminescence spectroscopies together with photocurrent measurements. This study exemplifies the possibility of using MOFs as photocatalysts for the solar-driven H2 generation using sustainable feedstocks.

11.
Nanomaterials (Basel) ; 12(19)2022 Oct 06.
Article En | MEDLINE | ID: mdl-36234622

Light can boost ozone efficiency in advanced oxidation processes (AOPs), either by direct ozone photolysis with UV light or by using a photocatalyst that can be excited with UV-Vis or solar light. The present review summarizes literature data on the combination of ozone and the g-C3N4 photocatalyst for the degradation of probe molecules in water, including oxalic, p-hydroxybenzoic and oxamic acids as well as ciprofloxacin and parabens. g-C3N4 is a metal-free visible-light photocatalyst based on abundant elements that establishes a synergistic effect with ozone, the efficiency of the combination of the photocatalysis and ozonation being higher than the sum of the two treatments independently. Available data indicate that this synergy derives from the higher efficiency in the generation of hydroxyl radicals due to the efficient electron quenching by O3 of photogenerated conduction band electrons in the g-C3N4 photocatalyst. Given the wide use of ozonizers in water treatment, it is proposed that their implementation with g-C3N4 photocatalysis could also boost ozone efficiency in the AOPs of real waste waters.

12.
Adv Mater ; 33(52): e2106627, 2021 Dec.
Article En | MEDLINE | ID: mdl-34632639

A new porous titanium(IV) squarate metal-organic framework (MOF), denoted as IEF-11, having a never reported titanium secondary building unit, is successfully synthesized and fully characterized. IEF-11 not only exhibits a permanent porosity but also an outstanding chemical stability. Further, as a consequence of combining the photoactive Ti(IV) and the electroactive squarate, IEF-11 presents relevant optoelectronic properties, applied here to the photocatalytic overall water splitting reaction. Remarkably, IEF-11 as a photocatalyst is able to produce record H2 amounts for MOF-based materials under simulated sunlight (up to 672 µmol gcatalyst in 22 h) without any activity loss during at least 10 d.

13.
Chemphyschem ; 22(9): 842-848, 2021 05 05.
Article En | MEDLINE | ID: mdl-33719121

Solid-state photovoltaic cells based on robust metal-organic frameworks (MOFs), MIL-125(Ti), MIL-125(Ti)-NH2 , UiO-67, Ru(bpy)2 -UiO-67, (bpy 2,2'-bipyridine) as active components and spiro-MeOTAD (MeOTAD 2,2',7,7'-tetrakis[N,N-di(p-methoxyphenyl)amino]-9,9'-spirobifluorene) as hole transporting layer have been prepared., The photovoltaic response of this material increases in the presence of bathochromic -NH2 groups on the linker or Ru (II) polypyridyl complexes light harvester. These results show that the strategies typically employed in photocatalysis to enhance the photocatalytic activity of MOFs can also be applied in the field of photovoltaic devices.

14.
Angew Chem Int Ed Engl ; 60(21): 11868-11873, 2021 May 17.
Article En | MEDLINE | ID: mdl-33631030

We introduce the first example of isoreticular titanium-organic frameworks, MUV-10 and MUV-12, to show how the different affinity of hard Ti(IV) and soft Ca(II) metal sites can be used to direct selective grafting of amines. This enables the combination of Lewis acid titanium centers and available -NH2 sites in two sizeable pores for cooperative cycloaddition of CO2 to epoxides at room temperature and atmospheric pressure. The selective grafting of molecules to heterometallic clusters adds up to the pool of methodologies available for controlling the positioning and distribution of chemical functions in precise positions of the framework required for definitive control of pore chemistry.

15.
Org Biomol Chem ; 19(4): 794-800, 2021 Jan 28.
Article En | MEDLINE | ID: mdl-33043920

This work reports the reduction of 4-nitrophenol to 4-aminophenol using UiO-66(Zr) as a bifunctional photocatalyst and hydrogenation catalyst using methanol as the hydrogen source. In particular, a series of UiO-66(Zr)-X (X: NH2, NO2 and H) and MIL-125(Ti)-NH2 catalysts have been screened as bifunctional catalysts for this process. UiO-66(Zr)-NH2 was found to be the most active material to promote light-assisted nitro hydrogenation under both UV-Vis and simulated sunlight irradiation. The tandem reaction occurs via hydrogen generation from a water/methanol mixture in the first step and, then, reduction of 4-nitrophenol to 4-aminophenol. UiO-66(Zr)-NH2 acts as a truly heterogeneous catalyst and can be reused several times without significant loss of activity, maintaining its crystallinity. This work shows the possibility of using MOFs as solar-driven bifunctional catalysts to promote the hydrogenation of organic compounds using methanol as the hydrogen source.

16.
Chemistry ; 26(67): 15682-15689, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-33107125

Defect engineering in metal-organic frameworks is commonly performed by using thermal or chemical treatments. Herein we report that oxygen plasma treatment generates structural defects on MIL-125(Ti)-NH2 , leading to an increase in its photocatalytic activity. Characterization data indicate that plasma-treated materials retain most of their initial crystallinity, while exhibiting somewhat lower surface area and pore volume. XPS and FT-IR spectroscopy reveal that oxygen plasma induces MIL-125(Ti)-NH2 partial terephthalate decarboxylation and an increase in the Ti-OH population. Thermogravimetric analyses confirm the generation of structural defects by oxygen plasma and allowed an estimation of the resulting experimental formula of the treated MIL-125(Ti)-NH2 solids. SEM analyses show that oxygen plasma treatment of MIL-125(Ti)-NH2 gradually decreases its particle size. Importantly, diffuse reflectance UV/Vis spectroscopy and valence band measurements demonstrate that oxygen plasma treatment alters the MIL-125(Ti)-NH2 band gap and, more significantly, the alignment of highest occupied and lowest unoccupied crystal orbitals. An optimal oxygen plasma treatment to achieve the highest efficiency in water splitting with or without methanol as sacrificial electron donor under UV/Vis or simulated sunlight was determined. The optimized plasma-treated MIL-125(Ti)-NH2 photocatalyst acts as a truly heterogeneous photocatalyst and retains most of its initial photoactivity and crystallinity upon reuse.

17.
ChemMedChem ; 15(23): 2236-2256, 2020 12 03.
Article En | MEDLINE | ID: mdl-32926525

Confinement of Au nanoparticles (NPs) within the porous materials with few nanometers (2-3 nm) has been a well established research area in the past decades in heterogeneous catalysis mainly due to the unique behaviour of Au NPs than its bulk counterpart. In this aspect, Au NPs encapsulated within the pore volumes of metal-organic frameworks (MOFs) have been intensively explored as heterogeneous solid catalysts for wide range of reactions. In recent years, Au NPs confined within the porous MOFs along with the photosensitizer or drug have been effectively used for the treatment of tumor cells through the generation of reactive oxygen species via cascade reactions. This work highlights the benefits of MOFs pores in the preparation of nanomedicine with high efficiency by assembling Au NPs, photosensitizer/drug with the combination of laser either for imaging or treatment of tumor cells. Further, the existing literature is grouped based on the nature of porous materials employed in the preparation of nanomedicine. The final section comments on our view on future developments in the field.


Antineoplastic Agents/pharmacology , Gold/pharmacology , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Gold/chemistry , Humans , Metal-Organic Frameworks/chemistry , Neoplasms/metabolism , Neoplasms/pathology , Particle Size , Porosity , Reactive Oxygen Species/metabolism
18.
Water Res ; 183: 116070, 2020 Sep 15.
Article En | MEDLINE | ID: mdl-32622236

The influence of the pre-ozonization on the formation of disinfection by-products (DBPs) upon chlorination for fresh waters containing three common cyanobacteria, namely Microcystis aeruginosa, Anabaena aequalis and Oscillatoria tenuis at 10,000 cells/mL is reported. Specifically, the formation carbonaceous-DBPs (C-DBPs) (trihalomethanes (THMs), haloacetic acids (HAAs) and haloketones (HKs)) and nitrogenous-DBPs (N-DBP) (haloacetonitriles (HAN) and trichloronitromethane (TCNM)) has been determined as a function of the pH (6.5 or 8.0 and bromide ion concentration (300 µg/L). The main C-DBPs were THMs and HAAs with negligible formation of HKs accompanied by minor amounts of HANs in the absence of TCNM. Pre-ozonation of the aqueous cyanobacteria suspensions does not allow a control over all the DBPs. In fact, pre-ozonation increases THM formation and generates TCNM, has low influence on HAAs and only decreases the formation of HANs. The overall conclusion of this work is that pre-ozonation of waters containing a relatively low concentration of common fresh water cyanobacteria is not an appropriate process to decrease DBP formation from chlorine. Cyanobacteria removal from raw water before chlorination or ozonation should reduce DBP formation.


Cyanobacteria , Disinfectants , Microcystis , Oscillatoria , Ozone , Water Pollutants, Chemical/analysis , Water Purification , Anabaena , Chlorine , Disinfection , Halogenation , Suspensions , Trihalomethanes/analysis
19.
ACS Appl Mater Interfaces ; 12(22): 25221-25232, 2020 Jun 03.
Article En | MEDLINE | ID: mdl-32368890

This work reports the synthesis of pyridyltriazol-functionalized UiO-66 (UiO stands for University of Oslo), namely, UiO-66-Pyta, from UiO-66-NH2 through three postsynthetic modification (PSM) steps. The good performance of the material derives from the observation that partial formylation (∼21% of -NHCHO groups) of H2BDC-NH2 by DMF, as persistent impurity, takes place during the synthesis of the UiO-66-NH2. Thus, to enhance material performance, first, the as-synthesized UiO-66-NH2 was deformylated to give pure UiO-66-NH2. Subsequently, the pure UiO-66-NH2 was converted to UiO-66-N3 with a nearly complete conversion (∼95%). Finally, the azide-alkyne[3+2]-cycloaddition reaction of 2-ethynylpyridine with the UiO-66-N3 gave the UiO-66-Pyta. The porous MOF was then applied for the solid-phase extraction of palladium ions from an aqueous medium. Affecting parameters on extraction efficiency of Pd(II) ions were also investigated and optimized. Interestingly, UiO-66-Pyta exhibited selective and superior adsorption capacity for Pd(II) with a maximum sorption capacity of 294.1 mg g-1 at acidic pH (4.5). The limit of detection (LOD) was found to be 1.9 µg L-1. The estimated intra- and interday precisions are 3.6 and 1.7%, respectively. Moreover, the adsorbent was regenerated and reused for five cycles without any significant change in the capacity and repeatability. The adsorption mechanism was described based on various techniques such as FT-IR, PXRD, SEM/EDS, ICP-AES, and XPS analyses as well as density functional theory (DFT) calculations. Notably, as a case study, the obtained UiO-66-Pyta after palladium adsorption, UiO-66-Pyta-Pd, was used as an efficient catalyst for the Suzuki-Miyaura cross-coupling reaction.

20.
Nanomaterials (Basel) ; 10(4)2020 Apr 13.
Article En | MEDLINE | ID: mdl-32295053

Ceria nanoparticles are cell compatible antioxidants whose activity can be enhanced by gold deposition and by surface functionalization with positive triphenylphosphonium units to selectively target the mitochondria. The antioxidant properties of these nanoparticles can serve as the basis of a new strategy for the treatment of several disorders exhibiting oxidative stress, such as cancer, diabetes or Alzheimer's disease. However, all of these pathologies require a specific antioxidant according with their mechanism to remove oxidant species excess in cells and diminish their effect on mitochondrial function. The mechanism through which ceria nanoparticles neutralize oxidative stress and their effect on mitochondrial function have not been characterized yet. In the present study, the mitochondria antioxidant effect of ceria and ceria-supported gold nanoparticles, with or without triphenylphosphonium functionalization, was assessed in HeLa cells. The effect caused by ceria nanoparticles on mitochondria function in terms of mitochondrial membrane potential (∆Ψm), adenosine triphosphate (ATP) production, nuclear respiratory factor 1 (NRF1) and nuclear factor erythroid-2-like 1 (NFE2L1) was reversed by the presence of gold. Furthermore, this effect was enhanced when nanoparticles were functionalized with triphenylphosphonium. Our study illustrates how the mitochondrial antioxidant effect induced by ceria nanoparticles can be modulated by the presence of gold.

...