Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Sci Rep ; 14(1): 11718, 2024 05 22.
Article En | MEDLINE | ID: mdl-38778209

Protein misfolding in the endoplasmic reticulum (ER) of podocytes contributes to the pathogenesis of glomerular diseases. Protein misfolding activates the unfolded protein response (UPR), a compensatory signaling network. We address the role of the UPR and the UPR transducer, inositol-requiring enzyme 1α (IRE1α), in streptozotocin-induced diabetic nephropathy in mice. Diabetes caused progressive albuminuria in control mice that was exacerbated in podocyte-specific IRE1α knockout (KO) mice. Compared to diabetic controls, diabetic IRE1α KO mice showed reductions in podocyte number and synaptopodin. Glomerular ultrastructure was altered only in diabetic IRE1α KO mice; the major changes included widening of podocyte foot processes and glomerular basement membrane. Activation of the UPR and autophagy was evident in diabetic control, but not diabetic IRE1α KO mice. Analysis of human glomerular gene expression in the JuCKD-Glom database demonstrated induction of genes associated with the ER, UPR and autophagy in diabetic nephropathy. Thus, mice with podocyte-specific deletion of IRE1α demonstrate more severe diabetic nephropathy and attenuation of the glomerular UPR and autophagy, implying a protective effect of IRE1α. These results are consistent with data in human diabetic nephropathy and highlight the potential for therapeutically targeting these pathways.


Autophagy , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Endoribonucleases , Mice, Knockout , Podocytes , Protein Serine-Threonine Kinases , Unfolded Protein Response , Animals , Podocytes/metabolism , Podocytes/pathology , Endoribonucleases/metabolism , Endoribonucleases/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Autophagy/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Humans , Male , Endoplasmic Reticulum Stress , Albuminuria/genetics , Albuminuria/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Gene Deletion , Endoplasmic Reticulum/metabolism
2.
Physiol Rep ; 12(1): e15897, 2024 Jan.
Article En | MEDLINE | ID: mdl-38163671

SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.


Nephrosis , Podocytes , Mice , Animals , Podocytes/metabolism , Paxillin/metabolism , Vinculin/metabolism , Talin/genetics , Talin/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Doxorubicin/toxicity , Protein Serine-Threonine Kinases/metabolism
3.
Front Med (Lausanne) ; 10: 1122328, 2023.
Article En | MEDLINE | ID: mdl-36993805

Background: Human glomerulonephritis (GN)-membranous nephropathy (MN), focal segmental glomerulosclerosis (FSGS) and IgA nephropathy (IgAN), as well as diabetic nephropathy (DN) are leading causes of chronic kidney disease. In these glomerulopathies, distinct stimuli disrupt metabolic pathways in glomerular cells. Other pathways, including the endoplasmic reticulum (ER) unfolded protein response (UPR) and autophagy, are activated in parallel to attenuate cell injury or promote repair. Methods: We used publicly available datasets to examine gene transcriptional pathways in glomeruli of human GN and DN and to identify drugs. Results: We demonstrate that there are many common genes upregulated in MN, FSGS, IgAN, and DN. Furthermore, these glomerulopathies were associated with increased expression of ER/UPR and autophagy genes, a significant number of which were shared. Several candidate drugs for treatment of glomerulopathies were identified by relating gene expression signatures of distinct drugs in cell culture with the ER/UPR and autophagy genes upregulated in the glomerulopathies ("connectivity mapping"). Using a glomerular cell culture assay that correlates with glomerular damage in vivo, we showed that one candidate drug - neratinib (an epidermal growth factor receptor inhibitor) is cytoprotective. Conclusion: The UPR and autophagy are activated in multiple types of glomerular injury. Connectivity mapping identified candidate drugs that shared common signatures with ER/UPR and autophagy genes upregulated in glomerulopathies, and one of these drugs attenuated injury of glomerular cells. The present study opens the possibility for modulating the UPR or autophagy pharmacologically as therapy for GN.

4.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166391, 2022 06 01.
Article En | MEDLINE | ID: mdl-35304860

Glomerular diseases involving podocyte/glomerular epithelial cell (GEC) injury feature protein misfolding and endoplasmic reticulum (ER) stress. Inositol-requiring enzyme 1α (IRE1α) mediates chaperone production and autophagy during ER stress. We examined the role of IRE1α in selective autophagy of the ER (reticulophagy). Control and IRE1α knockout (KO) GECs were incubated with tunicamycin to induce ER stress and subjected to proteomic analysis. This showed IRE1α-dependent upregulation of secretory pathway mediators, including the coat protein complex II component Sec23B. Tunicamycin enhanced expression of Sec23B and the reticulophagy adaptor reticulon-3-long (RTN3L) in control, but not IRE1α KO GECs. Knockdown of Sec23B reduced autophagosome formation in response to ER stress. Tunicamycin stimulated colocalization of autophagosomes with Sec23B and RTN3L in an IRE1α-dependent manner. Similarly, during ER stress, glomerular α5 collagen IV colocalized with RTN3L and autophagosomes. Degradation of RTN3L and collagen IV increased in response to tunicamycin, and the turnover was blocked by deletion of IRE1α; thus, the IRE1α pathway promotes RTN3L-mediated reticulophagy and collagen IV may be an IRE1α-dependent reticulophagy substrate. In experimental glomerulonephritis, expression of Sec23B, RTN3L, and LC3-II increased in glomeruli of control mice, but not in podocyte-specific IRE1α KO littermates. In conclusion, during ER stress, IRE1α redirects a subset of Sec23B-positive vesicles to deliver RTN3L-coated ER fragments to autophagosomes. Reticulophagy is a novel outcome of the IRE1α pathway in podocytes and may play a cytoprotective role in glomerular diseases.


Endoribonucleases/metabolism , Podocytes , Protein Serine-Threonine Kinases/metabolism , Animals , Autophagy/physiology , Endoplasmic Reticulum/metabolism , Endoribonucleases/genetics , Inositol/metabolism , Mice , Podocytes/metabolism , Protein Serine-Threonine Kinases/genetics , Proteomics , Transducers , Unfolded Protein Response
5.
Curr Issues Mol Biol ; 45(1): 268-285, 2022 Dec 30.
Article En | MEDLINE | ID: mdl-36661506

Inside tumors, cancer cells display several mechanisms to create an immunosuppressive environment. On the other hand, by migration processes, mesenchymal stromal cells (MSCs) can be recruited by different cancer tumor types from tissues as distant as bone marrow and contribute to tumor pathogenesis. However, the impact of the immunoregulatory role of MSCs associated with the aggressiveness of breast cancer cells by soluble molecules has not been fully elucidated. Therefore, this in vitro work aimed to study the effect of the conditioned medium of human bone marrow-derived-MSCs (hBM-MSC-cm) on the immunoregulatory capability of MDA-MB-231 and BT-474 breast cancer cells. The hBM-MSC-cm on MDA-MB-231 cells induced the overexpression of TGF-ß, IDO, and IL-10 genes. Additionally, immunoregulation assays of mononuclear cells (MNCs) in co-culture with MDA-MB-231 and hBM-MSC-cm decreased lymphocyte proliferation, and increased proteins IL-10, TGF-ß, and IDO while also reducing TNF levels, shooting the proportion of regulatory T cells. Conversely, the hBM-MSC-cm did not affect the immunomodulatory capacity of BT-474 cells. Thus, a differential immunoregulatory effect was observed between both representative breast cancer cell lines from different origins. Thus, understanding the immune response in a broader tumor context could help to design therapeutic strategies based on the aggressive behavior of tumor cells.

6.
Cell Death Discov ; 6(1): 128, 2020 Nov 19.
Article En | MEDLINE | ID: mdl-33298866

Glomerular epithelial cell (GEC)/podocyte proteostasis is dysregulated in glomerular diseases. The unfolded protein response (UPR) is an adaptive pathway in the endoplasmic reticulum (ER) that upregulates proteostasis resources. This study characterizes mechanisms by which inositol requiring enzyme-1α (IRE1α), a UPR transducer, regulates proteostasis in GECs. Mice with podocyte-specific deletion of IRE1α (IRE1α KO) were produced and nephrosis was induced with adriamycin. Compared with control, IRE1α KO mice had greater albuminuria. Adriamycin increased glomerular ER chaperones in control mice, but this upregulation was impaired in IRE1α KO mice. Likewise, autophagy was blunted in adriamycin-treated IRE1α KO animals, evidenced by reduced LC3-II and increased p62. Mitochondrial ultrastructure was markedly disrupted in podocytes of adriamycin-treated IRE1α KO mice. To pursue mechanistic studies, GECs were cultured from glomeruli of IRE1α flox/flox mice and IRE1α was deleted by Cre-lox recombination. In GECs incubated with tunicamycin, deletion of IRE1α attenuated upregulation of ER chaperones, LC3 lipidation, and LC3 transcription, compared with control GECs. Deletion of IRE1α decreased maximal and ATP-linked oxygen consumption, as well as mitochondrial membrane potential. In summary, stress-induced chaperone production, autophagy, and mitochondrial health are compromised by deletion of IRE1α. The IRE1α pathway is cytoprotective in glomerular disease associated with podocyte injury and ER stress.

7.
Am J Physiol Renal Physiol ; 318(6): F1377-F1390, 2020 06 01.
Article En | MEDLINE | ID: mdl-32308020

Ste20-like kinase SLK is critical for embryonic development and may play an important role in wound healing, muscle homeostasis, cell migration, and tumor growth. Mice with podocyte-specific deletion of SLK show albuminuria and damage to podocytes as they age. The present study addressed the role of SLK in glomerular injury. We induced adriamycin nephrosis in 3- to 4-mo-old control and podocyte SLK knockout (KO) mice. Compared with control, SLK deletion exacerbated albuminuria and loss of podocytes, synaptopodin, and podocalyxin. Glomeruli of adriamycin-treated SLK KO mice showed diffuse increases in the matrix and sclerosis as well as collapse of the actin cytoskeleton. SLK can phosphorylate ezrin. The complex of phospho-ezrin, Na+/H+ exchanger regulatory factor 2, and podocalyxin in the apical domain of the podocyte is a key determinant of normal podocyte architecture. Deletion of SLK reduced glomerular ezrin and ezrin phosphorylation in adriamycin nephrosis. Also, deletion of SLK reduced the colocalization of ezrin and podocalyxin in the glomerulus. Cultured glomerular epithelial cells with KO of SLK showed reduced ezrin phosphorylation and podocalyxin expression as well as reduced F-actin. Thus, SLK deletion leads to podocyte injury as mice age and exacerbates injury in adriamycin nephrosis. The mechanism may at least in part involve ezrin phosphorylation as well as disruption of the cytoskeleton and podocyte apical membrane structure.


Actin Cytoskeleton/enzymology , Doxorubicin , Glomerulosclerosis, Focal Segmental/enzymology , Nephrosis/enzymology , Podocytes/enzymology , Protein Serine-Threonine Kinases/deficiency , Actin Cytoskeleton/pathology , Actins/metabolism , Albuminuria/chemically induced , Albuminuria/enzymology , Albuminuria/genetics , Animals , Cells, Cultured , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Gene Knockdown Techniques , Glomerulosclerosis, Focal Segmental/chemically induced , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/pathology , Mice, Knockout , Microfilament Proteins/metabolism , Nephrosis/chemically induced , Nephrosis/genetics , Nephrosis/pathology , Phosphoproteins/metabolism , Phosphorylation , Podocytes/pathology , Protein Serine-Threonine Kinases/genetics , Proteins/metabolism , Sodium-Hydrogen Exchangers/metabolism
8.
Sci Rep ; 9(1): 16229, 2019 11 07.
Article En | MEDLINE | ID: mdl-31700134

Genetic ablation of calcium-independent phospholipase A2γ (iPLA2γ) in mice results in marked damage of mitochondria and enhanced autophagy in glomerular visceral epithelial cells (GECs) or podocytes. The present study addresses the role of iPLA2γ in glomerular injury. In adriamycin nephrosis, deletion of iPLA2γ exacerbated albuminuria and reduced podocyte number. Glomerular LC3-II increased and p62 decreased in adriamycin-treated iPLA2γ knockout (KO) mice, compared with treated control, in keeping with increased autophagy in KO. iPLA2γ KO GECs in culture also demonstrated increased autophagy, compared with control GECs. iPLA2γ KO GECs showed a reduced oxygen consumption rate and increased phosphorylation of AMP kinase (pAMPK), consistent with mitochondrial dysfunction. Adriamycin further stimulated pAMPK and autophagy. After co-transfection of GECs with mito-YFP (to label mitochondria) and RFP-LC3 (to label autophagosomes), or RFP-LAMP1 (to label lysosomes), there was greater colocalization of mito-YFP with RFP-LC3-II and with RFP-LAMP1 in iPLA2γ KO GECs, compared with WT, indicating enhanced mitophagy in KO. Adriamycin increased mitophagy in WT cells. Thus, iPLA2γ has a cytoprotective function in the normal glomerulus and in glomerulopathy, as deletion of iPLA2γ leads to mitochondrial damage and impaired energy homeostasis, as well as autophagy and mitophagy.


Calcium/metabolism , Doxorubicin/pharmacology , Gene Knockout Techniques , Group IV Phospholipases A2/deficiency , Group IV Phospholipases A2/genetics , Kidney Glomerulus/drug effects , Nephrosis/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Kidney Glomerulus/injuries , Kidney Glomerulus/pathology , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Mitophagy/drug effects , Mitophagy/genetics , Nephrosis/chemically induced , Nephrosis/enzymology , Nephrosis/pathology
9.
J Clin Res Pediatr Endocrinol ; 8(4): 419-424, 2016 12 01.
Article En | MEDLINE | ID: mdl-27354200

OBJECTIVE: To evaluate the use of the 13C-glucose breath test (13C-GBT) for insulin resistance (IR) detection in adolescents through comparison with fasting and post-glucose stimulus surrogates. METHODS: One hundred thirty-three adolescents aged between 10 and 16 years received an oral glucose load of 1.75 g per kg of body weight dissolved in 150 mL of water followed by an oral dose of 1.5 mg/kg of U-13C-Glucose, without a specific maximum dose. Blood samples were drawn at baseline and 120 minutes, while breath samples were obtained at baseline and at 30, 60, 90, 120, 150, and 180 minutes. The 13C-GBT was compared to homeostasis model assessment (HOMA) IR (≥p95 adjusted by gender and age), fasting plasma insulin (≥p90 adjusted by gender and Tanner stage), results of 2-h oral glucose tolerance test (OGTT), insulin levels (≥65 µU/mL) in order to determine the optimal cut-off point for IR diagnosis. RESULTS: 13C-GBT data, expressed as adjusted cumulative percentage of oxidized dose (A% OD), correlated inversely with fasting and post-load IR surrogates. Sexual development alters A% OD results, therefore individuals were stratified into pubescent and post-pubescent. The optimal cut-off point for the 13C-GBT in pubescent individuals was 16.3% (sensitivity=82.8% & specificity=60.6%) and 13.0% in post-pubescents (sensitivity=87.5% & specificity=63.6%), when compared to fasting plasma insulin. Similar results were observed against HOMA and 2-h OGTT insulin. CONCLUSION: The 13C-GBT is a practical and non-invasive method to screen for IR in adolescents with reasonable sensitivity and specificity.


Breath Tests/methods , Glucose Tolerance Test/methods , Glucose/administration & dosage , Insulin Resistance , Adolescent , Biomarkers/blood , Blood Glucose/analysis , Body Mass Index , Carbon Isotopes/metabolism , Child , Cross-Sectional Studies , Fasting/blood , Female , Glucose/metabolism , Homeostasis , Humans , Insulin/blood , Linear Models , Male , Reproducibility of Results
10.
Med Hypotheses ; 84(5): 511-5, 2015 May.
Article En | MEDLINE | ID: mdl-25769705

The most efficient cells for cardiac regeneration are myocardium-resident cardiac stem cells. However, the limited availability of these cells restricts their utility for cardiac cellular therapy. Mesenchymal stem cells can differentiate into a wide variety of tissues, but it is not simple to accurately direct cell differentiation into a specific lineage, such as cardiac tissue; this renders a low efficiency for cardiac regeneration therapy. Given the heterogeneity of mesenchymal stem cells, it may be possible to find specific stem cell subpopulations with a definite differentiation capacity toward cardiac lineage. A parameter to assess cardiac differentiation specificity could be surface marker expression; a population with an immunophenotype similar to cardiac stem cells may have a superior therapeutic value than unsorted mesenchymal stem cells. We hypothesize the existence of a cell line that combines the expression of cardiac stem cell surface markers with those of mesenchymal stem cells, a suitable name for this population is cardiomesenchymal stem cells (CMSC); such cells would be ideal for cardiac regeneration.


Heart/physiology , Mesenchymal Stem Cells/cytology , Models, Cardiovascular , Myocardium/cytology , Regeneration/physiology , Antigens, Surface/metabolism , Cell Differentiation/physiology , Cell Lineage/physiology , Humans , Immunophenotyping/methods , Mesenchymal Stem Cells/metabolism
...