Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771132

RESUMEN

Kinetoplastida is a group of flagellated protozoa characterized by the presence of a kinetoplast, a structure which is part of a large mitochondria and contains DNA. Parasites of this group include genera such as Leishmania, that cause disease in humans and animals, and Phytomonas, that are capable of infecting plants. Due to the lack of treatments, the low efficacy, or the high toxicity of the employed therapeutic agents there is a need to seek potential alternative treatments. In the present work, the antiparasitic activity on Leishmania infantum and Phytomonas davidi of 23 essential oils (EOs) from plants of the Lamiaceae and Asteraceae families, extracted by hydrodistillation (HD) at laboratory scale and steam distillation (SD) in a pilot plant, were evaluated. The chemical compositions of the EOs were determined by gas chromatography-mass spectrometry. Additionally, the cytotoxic activity on mammalian cells of the major components from the most active EOs was evaluated, and their anti-Phytomonas and anti-Leishmania effects analyzed. L. infantum was more sensitive to the EOs than P. davidi. The EOs with the best anti-kinetoplastid activity were S. montana, T. vulgaris, M. suaveolens, and L. luisieri. Steam distillation increased the linalyl acetate, ß-caryophyllene, and trans-α-necrodyl acetate contents of the EOs, and decreased the amount of borneol and 1,8 cineol. The major active components of the EOs were tested, with thymol being the strongest anti-Phytomonas compound followed by carvacrol. Our study identified potential treatments against kinetoplastids.


Asunto(s)
Aceites Volátiles , Plantas Medicinales , Trypanosomatina , Humanos , Animales , Aceites Volátiles/química , Vapor , Timol/análisis , Aceites de Plantas/química , Mamíferos
2.
Front Vet Sci ; 9: 981763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157195

RESUMEN

Trichomonas gallinae is a flagellated protozoan that parasitizes the upper digestive tract of various bird species and causes avian trichomonosis. The emergence of resistant strains to the standard treatment, based on nitroimidazoles, increases the need to find alternative therapies. In this study, 36 essential oils (EOs) from Lamiaceae and Asteraceae plant families were tested against T. gallinae trophozoites using the 3-(4,5-dimethylthiazol-2-yl-)-2,5-dipheniltetrazolium bromide (MTT) reduction assay. Among them, EOs from distinct species of Lamiaceae, including the genera Lavandula, Salvia, Thymus, Origanum, and Satureja were the ones reporting better anti-trichomonal activity, and were selected for further analysis, including chemical composition and in vitro assays. The chemical composition of the selected EOs was determined by gas chromatography followed by mass spectrometry and 19 pure compounds were tested against the protozoa, according to their higher abundance in the active EOs. Pure compounds which displayed the highest activity against T. gallinae trophozoites, ordered by highest to lowest activity, were α and ß-thujones, camphene, ß-pinene, linalyl acetate, thymol, 4-terpineol, γ-terpinene, α-pinene, p-cymene, D-fenchone and ß-caryophyllene. A dose dependent effect was observed in most of the EOs and pure compounds tested. The toxicity test conducted in eukaryotic cell cultures with the anti-trichomonal active pure compounds showed that ß-caryophyllene, camphene, α-pinene, and ß-pinene were slightly toxic for Vero cells, and the selectivity index was calculated. Based on the anti-trichomonal activity and the absence of cytotoxicity results, natural products from Lamiaceae plants could be useful as alternative therapy against avian trichomonosis, mainly those containing linalyl acetate, thymol, 4-terpinenol, γ-terpinene, p-cymene and D-fenchone.

3.
Chem Biodivers ; 17(10): e2000521, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945120

RESUMEN

Eight essential oils (EOs) from selected medicinal plants have been tested for their activity against Phytomonas davidi, a plant trypanosomal parasite. In the present research, the EOs have been tested on promastigote forms of P. davidi ATCC® 30287™ strain, along with their major components, both separately and in binary combinations, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The EOs with the highest antipromastigote activity were from Origanum virens and Salvia lavandulifolia. Thymol and ß-pinene were the most active pure compounds. The study of the activity of the pure compounds in combination indicated the existence of antagonistic and synergistic effects depending on the concentration tested. In general, the combinations at low concentrations favored the activity.


Asunto(s)
Antiprotozoarios/farmacología , Monoterpenos Bicíclicos/farmacología , Aceites Volátiles/farmacología , Plantas Medicinales/química , Timol/farmacología , Trypanosomatina/efectos de los fármacos , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Monoterpenos Bicíclicos/química , Monoterpenos Bicíclicos/aislamiento & purificación , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Origanum/química , Pruebas de Sensibilidad Parasitaria , Salvia/química , Timol/química , Timol/aislamiento & purificación
4.
Biomolecules ; 9(10)2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581691

RESUMEN

Given the importance of the genus Artemisia as a source of valuable natural products, the rare plant Artemisia pedemontana subspecies assoana, endemic to the Iberian Peninsula, has been experimentally cultivated in the greenhouse and aeroponically, to produce biomass for essential oil (EO) extraction. The chemical composition of the EOs was analyzed, and their plant protection (insects: Spodoptera littoralis, Rhopalosiphum padi, and Myzus persicae; plants: Lactuca sativa and Lolium perenne; fungi: Aspergillus niger; and nematode: Meloidogyne javanica) and antiparasitic (Trypanosoma cruzi, Phytomonas davidi, and antiplasmodial by the ferriprotoporphyrin biocrystallization inhibition test) properties were studied, in addition to the hydrolate by-product. The EOs showed a 1,8-cineole and camphor profile, with quantitative and qualitative chemical differences between the cultivation methods. These oils had moderate insect antifeedant, antifungal, and phytotoxic effects; were trypanocidel; and exhibited moderate phytomonacidal effects, while the hydrolate showed a strong nematicidal activity. Both EOs were similarly antifeedant; the EO from the greenhouse plants (flowering stage) was more biocidal (antifungal, nematicidal, and phytotoxic) than the EO from the aeroponic plants (growing stage), which was more antiparasitic. The major components of the oils (1,8-cineole and camphor), or their 1:1 combination, did not explain any of these effects. We can conclude that these EOs have potential applications as insect antifeedants, and as antifungal or antiparasitic agents, depending on the cultivation method, and that the hydrolate byproduct is a potent nematicidal.


Asunto(s)
Artemisia/crecimiento & desarrollo , Aceites Volátiles/química , Aceites Volátiles/farmacología , Animales , Áfidos/efectos de los fármacos , Artemisia/química , Alcanfor/química , Alcanfor/farmacología , Eucaliptol/química , Eucaliptol/farmacología , Hongos/efectos de los fármacos , Nematodos/efectos de los fármacos , Aceites de Plantas/química , Aceites de Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...