Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 225: 116264, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710334

RESUMEN

The retrosplenial cortex (RSC) plays a central role in processing contextual fear conditioning. In addition to corticocortical and thalamocortical projections, the RSC receives subcortical inputs, including a substantial projection from the nucleus incertus in the pontine tegmentum. This GABAergic projection contains the neuropeptide, relaxin-3 (RLN3), which inhibits target neurons via its Gi/o-protein-coupled receptor, RXFP3. To assess this peptidergic system role in contextual fear conditioning, we bilaterally injected the RSC of adult rats with an adeno-associated-virus (AAV), expressing the chimeric RXFP3 agonist R3/I5 or a control AAV, and subjected them to contextual fear conditioning. The R3/I5 injected rats did not display any major differences to control-injected and naïve rats but displayed a significantly delayed extinction. Subsequently, we employed acute bilateral injections of the specific RXFP3 agonist peptide, RXFP3-Analogue 2 (A2), into RSC. While the administration of A2 before each extinction trial had no impact on the extinction process, treatment with A2 before each acquisition trial resulted in delayed extinction. In related anatomical studies, we detected an enrichment of RLN3-immunoreactive nerve fibers in deep layers of the RSC, and a higher level of co-localization of RXFP3 mRNA with vesicular GABA transporter (vGAT) mRNA than with vesicular glutamate transporter-1 (vGLUT1) mRNA across the RSC, consistent with an effect of RLN3/RXFP3 signalling on the intrinsic, inhibitory circuits within the RSC. These findings suggest that contextual conditioning processes in the RSC involve, in part, RLN3 afferent modulation of local inhibitory neurons that provides a stronger memory acquisition which, in turn, retards the extinction process.


Asunto(s)
Extinción Psicológica , Miedo , Receptores Acoplados a Proteínas G , Animales , Masculino , Miedo/fisiología , Miedo/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Ratas , Extinción Psicológica/fisiología , Extinción Psicológica/efectos de los fármacos , Relaxina/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Giro del Cíngulo/metabolismo , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/fisiología , Receptores de Péptidos
2.
Behav Brain Res ; 462: 114874, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38266780

RESUMEN

Contextual fear conditioning is a behavioral paradigm used to assess hippocampal-dependent memory in experimental animals. Perception of the context depends on activation of a distinct population of neurons in the hippocampus and in hippocampal-related areas that process discrete aspects of context perception. In the absence of any putatively associated cue, the context becomes the salient element that may warn of an upcoming aversive event; and in particular conditions, animals generalize this warning to any new or similar context. In this study we evaluated the effects of the number of sessions, the number of unconditioned stimuli per acquisition session and the distribution of extinction sessions to assess fear acquisition and extinction and determine under which conditions generalization occurred in adult, male rats. We observed that the organization and spacing of sessions were relevant factors in the acquisition and extinction of contextual fear memories. Extinction occurred with significantly greater robustness when sessions were spread over two days. Furthermore, results indicated that exposure to a single 0.3 mA, 0.5 s footshock in two different sessions could produce context-specific fear, while more acquisition sessions or more footshocks within a single session produced a generalization of the fear response to a new context. Notably, when generalization occurred, successive re-exposure to the generalized context produced extinction in a similar way to the paired exposure. Together, the present findings identify clear procedural and behavioral parameters amenable to neural systems analysis of three clinically relevant outcomes of contextual fear conditioning, i.e., memory acquisition, storage and extinction.


Asunto(s)
Extinción Psicológica , Miedo , Ratas , Masculino , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Memoria/fisiología , Condicionamiento Clásico/fisiología , Hipocampo/fisiología
3.
J Am Chem Soc ; 145(37): 20242-20247, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37439676

RESUMEN

Peptides and peptidomimetics are attractive drug candidates because of their high target specificity and low-toxicity profiles. Developing peptidomimetics using hydrocarbon (HC)-stapling or other stapling strategies has gained momentum because of their high stability and resistance to proteases; however, they have limitations. Here, we take advantage of the α-methyl group and an aromatic phenyl ring in a unique unnatural amino acid, α-methyl-l-phenylalanine (αF), and propose a novel, noncovalent stapling strategy to stabilize peptides. We utilized this strategy to create an α-helical B-chain mimetic of a complex insulin-like peptide, human relaxin-3 (H3 relaxin). Our comprehensive data set (in vitro, ex vivo, and in vivo) confirmed that the new high-yielding B-chain mimetic, H3B10-27(13/17αF), is remarkably stable in serum and fully mimics the biological function of H3 relaxin. H3B10-27(13/17αF) is an excellent scaffold for further development as a drug lead and an important tool to decipher the physiological functions of the neuropeptide G protein-coupled receptor, RXFP3.


Asunto(s)
Peptidomiméticos , Relaxina , Humanos , Relaxina/química , Relaxina/metabolismo , Receptores Acoplados a Proteínas G/química , Conformación Proteica en Hélice alfa , Fenilalanina
4.
Front Neurosci ; 17: 1176587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234259

RESUMEN

Introduction: The septal area provides a rich innervation to the hippocampus regulating hippocampal excitability to different behavioral states and modulating theta rhythmogenesis. However, little is known about the neurodevelopmental consequences of its alterations during postnatal development. The activity of the septohippocampal system is driven and/or modulated by ascending inputs, including those arising from the nucleus incertus (NI), many of which contain the neuropeptide, relaxin-3 (RLN3). Methods: We examined at the molecular and cellular level the ontogeny of RLN3 innervation of the septal area in postnatal rat brains. Results: Up until P13-15 there were only scattered fibers in the septal area, but a dense plexus had appeared by P17 that was extended and consolidated throughout the septal complex by P20. There was a decrease in the level of colocalization of RLN3 and synaptophysin between P15 and P20 that was reversed between P20 and adulthood. Biotinylated 3-kD dextran amine injections into the septum, revealed retrograde labeling present in the brainstem at P10-P13, but a decrease in anterograde fibers in the NI between P10-20. Simultaneously, a differentiation process began during P10-17, resulting in fewer NI neurons double-labeled for serotonin and RLN3. Discussion: The onset of the RLN3 innervation of the septum complex between P17-20 is correlated with the onset of hippocampal theta rhythm and several learning processes associated with hippocampal function. Together, these data highlight the relevance and need for further analysis of this stage for normal and pathological septohippocampal development.

5.
Brain Struct Funct ; 228(5): 1307-1328, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37173580

RESUMEN

Nucleus incertus (NI) neurons in the pontine tegmentum give rise to ascending forebrain projections and express the neuropeptide relaxin-3 (RLN3) which acts via the relaxin-family peptide 3 receptor (RXFP3). Activity in the hippocampus and entorhinal cortex can be driven from the medial septum (MS), and the NI projects to all these centers, where a prominent pattern of activity is theta rhythm, which is related to spatial memory processing. Therefore, we examined the degree of collateralization of NI projections to the MS and the medial temporal lobe (MTL), comprising medial and lateral entorhinal cortex (MEnt, LEnt) and dentate gyrus (DG), and the ability of the MS to drive entorhinal theta in the adult rat. We injected fluorogold and cholera toxin-B into the MS septum and either MEnt, LEnt or DG, to determine the percentage of retrogradely labeled neurons in the NI projecting to both or single targets, and the relative proportion of these neurons that were RLN3-positive ( +). The projection to the MS was threefold stronger than that to the MTL. Moreover, a majority of NI neurons projected independently to either MS or the MTL. However, RLN3 + neurons collateralize significantly more than RLN3-negative (-) neurons. In in vivo studies, electrical stimulation of the NI induced theta activity in the MS and the entorhinal cortex, which was impaired by intraseptal infusion of an RXFP3 antagonist, R3(BΔ23-27)R/I5, particularly at ~ 20 min post-injection. These findings suggest that the MS plays an important relay function in the NI-induced generation of theta within the entorhinal cortex.


Asunto(s)
Corteza Entorrinal , Ritmo Teta , Ratas , Animales , Núcleos del Rafe , Lóbulo Temporal , Memoria Espacial/fisiología , Receptores de Péptidos , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...