Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Pharm Des ; 30(7): 489-518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757691

RESUMEN

Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.


Asunto(s)
Sistemas de Liberación de Medicamentos , Geles , Geles/química , Humanos , Administración Tópica , Animales , Administración Cutánea , Absorción Cutánea/efectos de los fármacos
2.
Materials (Basel) ; 17(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541577

RESUMEN

MXenes are two-dimensional transition metal carbides, nitrides, and carbonitrides that have become important materials in nanotechnology because of their remarkable mechanical, electrical, and thermal characteristics. This review emphasizes how crucial MXene conjugates are for several biomedical applications, especially in the field of cancer. These two-dimensional (2D) nanoconjugates with photothermal, chemotherapeutic, and photodynamic activities have demonstrated promise for highly effective and noninvasive anticancer therapy. MXene conjugates, with their distinctive optical capabilities, have been employed for bioimaging and biosensing, and their excellent light-to-heat conversion efficiency makes them perfect biocompatible and notably proficient nanoscale agents for photothermal applications. The synthesis and characterization of MXenes provide a framework for an in-depth understanding of various fabrication techniques and their importance in the customized formation of MXene conjugates. The following sections explore MXene-based conjugates for nanotheranostics and demonstrate their enormous potential for biomedical applications. Nanoconjugates, such as polymers, metals, graphene, hydrogels, biomimetics, quantum dots, and radio conjugates, exhibit unique properties that can be used for various therapeutic and diagnostic applications in the field of cancer nanotheranostics. An additional layer of understanding into the safety concerns of MXene nanoconjugates is provided by detailing their toxicity viewpoints. Furthermore, the review concludes by addressing the opportunities and challenges in the clinical translation of MXene-based nanoconjugates, emphasizing their potential in real-world medical practices.

3.
F1000Res ; 12: 1438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38778814

RESUMEN

Background: In the current work, co-rotating twin-screw processor (TSP) was utilized to formulate solid crystal suspension (SCS) of carvedilol (CAR) for enhancing its solubility, dissolution rate, permeation and bioavailability using mannitol as a hydrophilic carrier. Methods: In-silico molecular dynamics (MD) studies were done to simulate the interaction of CAR with mannitol at different kneading zone temperatures (KZT). Based on these studies, the optimal CAR: mannitol ratios and the kneading zone temperatures for CAR solubility enhancement were assessed. The CAR-SCS was optimized utilizing Design-of-Experiments (DoE) methodology using the Box-Behnken design. Saturation solubility studies and in vitro dissolution studies were performed for all the formulations. Physicochemical characterization was performed using differential scanning calorimetry , Fourier transform infrared spectroscopy, X-ray diffraction studies, and Raman spectroscopy analysis. Ex vivo permeation studies and in vivo pharmacokinetic studies for the CAR-SCS were performed. Stability studies were performed for the DoE-optimized CAR-SCS at accelerated stability conditions at 40 ºC/ 75% RH for three months. Results: Experimentally, the formulation with CAR: mannitol ratio of 20:80, prepared using a KZT of 120 ºC at 100 rpm screw speed showed the highest solubility enhancement accounting for 50-fold compared to the plain CAR. Physicochemical characterization confirmed the crystalline state of DoE-optimized CAR-SCS. In-vitro dissolution studies indicated a 6.03-fold and 3.40-fold enhancement in the dissolution rate of optimized CAR-SCS in pH 1.2 HCl solution and phosphate buffer pH 6.8, respectively, as compared to the pure CAR. The enhanced efficacy of the optimized CAR-SCS was indicated in the ex vivo and in vivo pharmacokinetic studies wherein the apparent permeability was enhanced 1.84-fold and bioavailability enhanced 1.50-folds compared to the plain CAR. The stability studies showed good stability concerning the drug content. Conclusions: TSP technology could be utilized to enhance the solubility, bioavailability and permeation of poor soluble CAR by preparing the SCS.

4.
AAPS PharmSciTech ; 23(5): 161, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676441

RESUMEN

Topical drug delivery provides several benefits over other conventional routes by providing localizing therapeutic effects and also avoids the gastrointestinal tract circumventing the first-pass metabolism and enzymatic drug degradation. Being painless, the topical route also prevents the difficulties linked with the parenteral route. However, there are limitations to the current topical systems which necessitate the need for further research to find functional excipients to overcome these limitations. This review deals in depth with the ionic liquids concerning their physicochemical properties and applicability as well as their role in the arena of topical drug delivery in permeation enhancement, bioavailability enhancement of the drugs by solvation, and drug moiety modification. The review gives a detailed insight into the recent literature on ionic liquid-based topical formulations like ionic liquid-based emulsions, active pharmaceutical ingredient-ionic liquids, ionic liquid-based bacterial cellulose membranes, topical small interfering RNA (siRNA) delivery, and ionogels as a possible solutions for overcoming the challenges associated with the topical route. This review also takes into account the toxicological aspects and biomedical applications of ionic liquids.


Asunto(s)
Líquidos Iónicos , Administración Tópica , Sistemas de Liberación de Medicamentos , Emulsiones/química , Excipientes , Líquidos Iónicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA