Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 126(47): 20143-20154, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36483685

RESUMEN

A detailed examination of the electronic structures of methylammonium lead triiodide (MAPI) and methylammonium iodide (MAI) is performed with ab initio molecular dynamics (AIMD) simulations based on density functional theory, and the theoretical results are compared to experimental probes. The occupied valence bands of a MAPI single crystal and MAI powder are probed with X-ray photoelectron spectroscopy, and the conduction bands are probed from the perspective of nitrogen K-edge X-ray absorption spectroscopy. Combined, the theoretical simulations and the two experimental techniques allow for a dissection of the electronic structure unveiling the nature of chemical bonding in MAPI and MAI. Here, we show that the difference in band gap between MAPI and MAI is caused chiefly by interactions between iodine and lead but also weaker interactions with the MA+ counterions. Spatial decomposition of the iodine p levels allows for analysis of Pb-I σ bonds and π interactions, which contribute to this effect with the involvement of the Pb 6p levels. Differences in hydrogen bonding between the two materials, seen in the AIMD simulations, are reflected in nitrogen valence orbital composition and in nitrogen K-edge X-ray absorption spectra.

2.
Nat Commun ; 13(1): 3839, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787623

RESUMEN

Hot carrier solar cells hold promise for exceeding the Shockley-Queisser limit. Slow hot carrier cooling is one of the most intriguing properties of lead halide perovskites and distinguishes this class of materials from competing materials used in solar cells. Here we use the element selectivity of high-resolution X-ray spectroscopy and density functional theory to uncover a previously hidden feature in the conduction band states, the σ-π energy splitting, and find that it is strongly influenced by the strength of electronic coupling between the A-cation and bromide-lead sublattice. Our finding provides an alternative mechanism to the commonly discussed polaronic screening and hot phonon bottleneck carrier cooling mechanisms. Our work emphasizes the optoelectronic role of the A-cation, provides a comprehensive view of A-cation effects in the crystal and electronic structures, and outlines a broadly applicable spectroscopic approach for assessing the impact of chemical alterations of the A-cation on perovskite electronic structure.

3.
Adv Mater ; 34(14): e2107932, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35076969

RESUMEN

Lead-based halide perovskite crystals are shown to have strongly anharmonic structural dynamics. This behavior is important because it may be the origin of their exceptional photovoltaic properties. The double perovskite, Cs2 AgBiBr6 , has been recently studied as a lead-free alternative for optoelectronic applications. However, it does not exhibit the excellent photovoltaic activity of the lead-based halide perovskites. Therefore, to explore the correlation between the anharmonic structural dynamics and optoelectronic properties in lead-based halide perovskites, the structural dynamics of Cs2 AgBiBr6 are investigated and are compared to its lead-based analog, CsPbBr3 . Using temperature-dependent Raman measurements, it is found that both materials are indeed strongly anharmonic. Nonetheless, the expression of their anharmonic behavior is markedly different. Cs2 AgBiBr6 has well-defined normal modes throughout the measured temperature range, while CsPbBr3 exhibits a complete breakdown of the normal-mode picture above 200 K. It is suggested that the breakdown of the normal-mode picture implies that the average crystal structure may not be a proper starting point to understand the electronic properties of the crystal. In addition to our main findings, an unreported phase of Cs2 AgBiBr6 is also discovered below ≈37 K.

4.
ACS Appl Mater Interfaces ; 14(30): 34171-34179, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34460226

RESUMEN

The origin of the low densities of electrically active defects in Pb halide perovskite (HaP), a crucial factor for their use in photovoltaics, light emission, and radiation detection, remains a matter of discussion, in part because of the difficulty in determining these densities. Here, we present a powerful approach to assess the defect densities, based on electric field mapping in working HaP-based solar cells. The minority carrier diffusion lengths were deduced from the electric field profile, measured by electron beam-induced current (EBIC). The EBIC method was used earlier to get the first direct evidence for the n-i-p junction structure, at the heart of efficient HaP-based PV cells, and later by us and others for further HaP studies. This manuscript includes EBIC results on illuminated cell cross sections (in operando) at several light intensities to compare optoelectronic characteristics of different cells made by different groups in several laboratories. We then apply a simple, effective single-level defect model that allows deriving the densities (Nr) of the defect acting as recombination center. We find Nr ≈ 1 × 1013 cm-3 for mixed A cation lead bromide-based HaP films and ∼1 × 1014 cm-3 for MAPbBr3(Cl). As EBIC photocurrents are similar at the grain bulk and boundaries, we suggest that the defects are at the interfaces with selective contacts rather than in the HaP film. These results are relevant for photovoltaic devices as the EBIC responses distinguish clearly between high- and low-efficiency devices. The most efficient devices have n-i-p structures with a close-to-intrinsic HaP film, and the selective contacts then dictate the electric field strength throughout the HaP absorber.

5.
ACS Appl Mater Interfaces ; 13(45): 54527-54535, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34734692

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs) have emerged as a versatile class of semiconductors for numerous optoelectronic applications. Here, we demonstrate light-excitation-dependent two-dimensional (2D) position-sensitive detectors (PSDs) using a mixed-phase perovskite, FA0.83Cs0.17Pb(I0.9Br0.1)3, as the active semiconductor, incorporated within a five-terminal device geometry. The light-induced lateral photovoltage, which is initiated by selective charge transfer across the metal-perovskite barrier interface, is utilized to achieve the excitation-position-dependent electric response. The 2D PSD devices exhibit a spatially dependent linear variation of the photosignal with sensitivity >50 µV mm-1 and a low position detection error (1-2%), making them suitable for applications such as quadrant detectors. Further, it is observed that the device architecture plays a key role in controlling the dynamics and linearity of the HOIP PSDs. The large active area devices (up to ∼2 cm × 2 cm) exhibit a distinct spatial variation of the photosignal. We utilize the functionality of the PSD device for light-tracking applications by implementing a continuous detection scheme.

6.
J Phys Chem C Nanomater Interfaces ; 125(15): 8360-8368, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-34084262

RESUMEN

The performance of hybrid perovskite materials in solar cells crucially depends on their electronic properties, and it is important to investigate contributions to the total electronic structure from specific components in the material. In a combined theoretical and experimental study of CH3NH3PbI3-methylammonium lead triiodide (MAPI)-and its bromide cousin CH3NH3PbBr3 (MAPB), we analyze nitrogen K-edge (N 1s-to-2p*) X-ray absorption (XA) spectra measured in MAPI and MAPB single crystals. This permits comparison of spectral features to the local character of unoccupied molecular orbitals on the CH3NH3 + (MA+) counterions and allows us to investigate how thermal fluctuations, hydrogen bonding, and halide-ion substitution influence the XA spectra as a measure of the local electronic structure. In agreement with the experiment, the simulated spectra for MAPI and MAPB show close similarity, except that the MAPB spectral features are blue-shifted by +0.31 eV. The shift is shown to arise from the intrinsic difference in the electronic structure of the two halide atoms rather than from structural differences between the materials. In addition, from the spectral sampling analysis of molecular dynamics simulations, clear correlations between geometric descriptors (N-C, N-H, and H···I/Br distances) and spectral features are identified and used to explain the spectral shapes.

7.
Nat Mater ; 20(9): 1248-1254, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33888905

RESUMEN

Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.

8.
J Am Chem Soc ; 142(39): 16569-16578, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32869985

RESUMEN

The success of organic-inorganic perovskites in optoelectronics is dictated by the complex interplay between various underlying microscopic phenomena. The structural dynamics of organic cations and the inorganic sublattice after photoexcitation are hypothesized to have a direct effect on the material properties, thereby affecting the overall device performance. Here, we use ultrafast heterodyne-detected two-dimensional (2D) electronic spectroscopy to reveal impulsively excited vibrational modes of methylammonium (MA) lead iodide perovskite, which drive the structural distortion after photoexcitation. Vibrational analysis of the measured data allows us to monitor the time-evolved librational motion of the MA cation along with the vibrational coherences of the inorganic sublattice. Wavelet analysis of the observed vibrational coherences reveals the coherent generation of the librational motion of the MA cation within ∼300 fs complemented with the coherent evolution of the inorganic skeletal motion. To rationalize this observation, we employed the configuration interaction singles (CIS), which support our experimental observations of the coherent generation of librational motions in the MA cation and highlight the importance of the anharmonic interaction between the MA cation and the inorganic sublattice. Moreover, our advanced theoretical calculations predict the transfer of the photoinduced vibrational coherence from the MA cation to the inorganic sublattice, leading to reorganization of the lattice to form a polaronic state with a long lifetime. Our study uncovers the interplay of the organic cation and inorganic sublattice during formation of the polaron, which may lead to novel design principles for the next generation of perovskite solar cell materials.

9.
Chem Mater ; 32(15): 6676-6684, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32952296

RESUMEN

Alternatives to lead- and tin-based perovskites for photovoltaics and optoelectronics are sought that do not suffer from the disadvantages of toxicity and low device efficiency of present-day materials. Here we report a study of the double perovskite Cs2TeI6, which we have synthesized in the thin film form for the first time. Exhaustive trials concluded that spin coating CsI and TeI4 using an antisolvent method produced uniform films, confirmed as Cs2TeI6 by XRD with Rietveld analysis. They were stable up to 250 °C and had an optical band gap of ∼1.5 eV, absorption coefficients of ∼6 × 104 cm-1, carrier lifetimes of ∼2.6 ns (unpassivated 200 nm film), a work function of 4.95 eV, and a p-type surface conductivity. Vibrational modes probed by Raman and FTIR spectroscopy showed resonances qualitatively consistent with DFT Phonopy-calculated spectra, offering another route for phase confirmation. It was concluded that the material is a candidate for further study as a potential optoelectronic or photovoltaic material.

10.
Sci Adv ; 6(38)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32948583

RESUMEN

Singlet fission is a spin-allowed exciton multiplication process in organic semiconductors that converts one spin-singlet exciton to two triplet excitons. It offers the potential to enhance solar energy conversion by circumventing the Shockley-Queisser limit on efficiency. We study the primary steps of singlet fission in a pentacene film by using a combination of TG and 2D electronic spectroscopy complemented by quantum chemical and nonadiabatic dynamics calculations. We show that the coherent vibrational dynamics induces the ultrafast transition from the singlet excited electronic state to the triplet-pair state via a degeneracy of potential energy surfaces, i.e., a multidimensional conical intersection. Significant vibronic coupling of the electronic wave packet to a few key intermolecular rocking modes in the low-frequency region connect the excited singlet and triplet-pair states. Along with high-frequency local vibrations acting as tuning modes, they open a new channel for the ultrafast exciton transfer through the resulting conical intersection.

11.
Science ; 369(6499): 96-102, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32631893

RESUMEN

Longevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidinium-based ionic compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the bandgap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency. This additive also retards compositional segregation into impurity phases and pinhole formation in the perovskite absorber layer during aggressive aging. Under full-spectrum simulated sunlight in ambient atmosphere, our unencapsulated and encapsulated cells retain 80 and 95% of their peak and post-burn-in efficiencies for 1010 and 1200 hours at 60° and 85°C, respectively. Our analysis reveals detailed degradation routes that contribute to the failure of aged cells.

12.
Nano Lett ; 19(10): 7054-7061, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31496255

RESUMEN

Exciton fine structure splitting in semiconductors reflects the underlying symmetry of the crystal and quantum confinement. Because the latter factor strongly enhances the exchange interaction, most work has focused on nanostructures. Here, we report on the first observation of the bright exciton fine structure splitting in a bulk semiconductor crystal, where the impact of quantum confinement can be specifically excluded, giving access to the intrinsic properties of the material. Detailed investigation of the exciton photoluminescence and reflection spectra of a bulk methylammonium lead tribromide single crystal reveals a zero magnetic field splitting as large as ∼200 µeV. This result provides an important starting point for the discussion of the origin of the large bright exciton fine structure splitting observed in perovskite nanocrystals.

13.
J Am Chem Soc ; 140(2): 574-577, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29266934

RESUMEN

Intrinsic organic-inorganic metal halide perovskites (OIHP) based semiconductors have shown wide applications in optoelectronic devices. There have been several attempts to incorporate heterovalent metal (e.g., Bi3+) ions in the perovskites in an attempt to induce electronic doping and increase the charge carrier density in the semiconductor. It has been reported that inclusion of Bi3+ decreases the band gap of the material considerably. However, contrary to the earlier conclusions, despite a clear change in the appearance of the crystal as observed by eye, here we show that the band gap of MAPbBr3 crystals does not change due the presence of Bi3+ in the growth solution. An increased density of states in the band gap and use of very thick samples for transmission measurements, erroneously give the impression of a band gap shift. These sub band gap states also act as nonradiative recombination centers in the crystals.

14.
Nat Commun ; 8(1): 590, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928482

RESUMEN

Ultralow trap densities, exceptional optical and electronic properties have been reported for lead halide perovskites single crystals; however, ambiguities in basic properties, such as the band gap, and the electronic defect densities in the bulk and at the surface prevail. Here, we synthesize single crystals of methylammonium lead bromide (CH3NH3PbBr3), characterise the optical absorption and photoluminescence and show that the optical properties of single crystals are almost identical to those of polycrystalline thin films. We observe significantly longer lifetimes and show that carrier diffusion plays a substantial role in the photoluminescence decay. Contrary to many reports, we determine that the trap density in CH3NH3PbBr3 perovskite single crystals is 1015 cm-3, only one order of magnitude lower than in the thin films. Our enhanced understanding of optical properties and recombination processes elucidates ambiguities in earlier reports, and highlights the discrepancies in the estimation of trap densities from electronic and optical methods.Metal halide perovskites for optoelectronic devices have been extensively studied in two forms: single-crystals or polycrystalline thin films. Using spectroscopic approaches, Wenger et al. show that polycrystalline thin films possess similar optoelectronic properties to single crystals.

16.
J Am Chem Soc ; 139(17): 6030-6033, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28426219

RESUMEN

Lead halide perovskites are materials with excellent optoelectronic and photovoltaic properties. However, some hurdles remain prior to commercialization of these materials, such as chemical stability, phase stability, sensitivity to moisture, and potential issues due to the toxicity of lead. Here, we report a new type of lead-free perovskite related compound, Cs2PdBr6. This compound is solution processable, exhibits long-lived photoluminescence, and an optical band gap of 1.6 eV. Density functional theory calculations indicate that this compound has dispersive electronic bands, with electron and hole effective masses of 0.53 and 0.85 me, respectively. In addition, Cs2PdBr6 is resistant to water, in contrast to lead-halide perovskites, indicating excellent prospects for long-term stability. These combined properties demonstrate that Cs2PdBr6 is a promising novel compound for optoelectronic applications.

17.
Nat Commun ; 7: 13303, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830749

RESUMEN

Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. We use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization.

18.
Adv Mater ; 28(5): 923-9, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26630410

RESUMEN

A general strategy for the in-plane structuring of organic-inorganic perovskite films is presented. The method is used to fabricate an industrially relevant distributed feedback (DFB) cavity, which is a critical step toward all-electrially pumped injection laser diodes. This approach opens the prospects of perovskite materials for much improved optical control in LEDs, solar cells, and also toward applications as optical devices.

19.
Nat Commun ; 6: 10030, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26615763

RESUMEN

Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I(-), and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead.

20.
Nat Commun ; 6: 7880, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26246039

RESUMEN

The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500-1,700 cm(-1) region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...