Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(25): 17364-17379, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38813122

RESUMEN

The investigation of binary and filled skutterudite structures, particularly PtSb3 and GdPt4Sb12, has gained significant attention, becoming a focal point in scientific research. This comprehensive report delves into the intrinsic characteristics of these structures using Density Functional Theory (DFT). Initially, we assess the structural stability of PtSb3 and GdPt4Sb12 by examining their total ground state energy and cohesive energy, employing the Brich Murnaghan equation of state to determine stability in various configurations. Further insights are gained by exploring second-order elastic constants (SOEC's) to extend our understanding of structural stability. The electronic structures are then meticulously defined through a quantum mechanical treatment, employing a combination of two distinct spin-polarized approximation schemes: Perdew-Burke-Ernzerhof Generalised Gradient Approximation (PBE-GGA) and Tran-Blaha modified Becke-Johnson (TB-mBJ). The resulting band structures reveal a symmetry in electronic behavior, showcasing spin-magnetic moments of 3 µB and 7.58 µB per formula unit, with the primary contributions emanating from the Pt 3d and Pt4+ 3d-transition elements. To gauge thermal stability, we evaluate the phonon-dependent Grüneisen parameter (γ) across specific temperature ranges. The study extends to exploring transport properties as a function of chemical potential (µ - EF) at various temperatures. The findings suggest that these designed materials hold substantial potential for diverse applications, particularly in conventional spin-based and thermoelectric technologies. The comprehensive insights obtained through this investigation pave the way for a deeper understanding and broader implications in various technological domains.

2.
ACS Omega ; 8(50): 48113-48129, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144122

RESUMEN

Through intricate calculations, the density functional theory (DFT) implemented in the Wien2k code was employed to comprehensively investigate a wide range of material characteristics. Our study encompasses an exhaustive analysis of structural stability, electronic properties, magnetic behaviors, transport phenomena, mechanical responses, and thermodynamic profiles of two notable instances of filled Skutterudites, namely, CeNi4P12 and DyCo4Sb12, which have been thoroughly explored. These computations were performed using the WIEN 2K code, combining local orbitals and the full-potential linearized augmented plane-wave approach. The findings provided insight into the wide range of properties of these materials. In this methodology, the exchange-correlation potential relies on the local-density approximation. We conducted the calculations with and without incorporating spin-orbit interactions. The results obtained provide information about the lattice constant, bulk modulus, and pressure derivative. The stability, as indicated by the P-V graphical plot, suggests that there are no structural phase transitions from the cubic symmetry structure. Notably, our work includes an examination of Curie temperatures, which are pivotal in understanding magnetic phase transitions. The validated elastic properties further support the material's stability and corroborate its ductile nature. These alloys should be considered for spintronic and thermoelectric applications due to their estimated transport characteristics and the observed ductile nature. To enhance our understanding of the thermal stability of antimony-based compounds, we have made reliable estimations of the thermophysical characteristics. By integrating theoretical insights with practical implications, we bridge the gap between fundamental understanding and material design applications. Using DFT in the Wien2k framework, we discover connections and patterns among different properties, showing how to create materials with specific functions and better performance. This approach not only advances our fundamental comprehension of materials but also promises innovation across various technological domains.

4.
RSC Adv ; 13(40): 27873-27886, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37731830

RESUMEN

Using the density functional theory methodology, we have thoroughly examined KRu4As12 and KRu4Sb12 skutterudites, including their structural, electronic, mechanical, transport, and thermodynamic properties. First and foremost, using the Birch-Murnaghan equation of state, the structural stability has been calculated in terms of their total ground state and cohesive energies. With the use of the approximation approaches GGA and GGA + mBJ, the electrical structure and density of the states reveal their metallic nature. This demonstration predicts the dominant ferromagnetic spin configuration of materials by considering their electronic behavior and magnetic interactions. The ductile behavior of these alloys is also addressed by their mechanical qualities, which indicate how they might be used in engineering and industrial settings. Moreover, the semi-classical Boltzmann transport theory has been employed to examine the Seebeck coefficient as well as the electric and thermal conductivities. The general tendency of these compounds demonstrates their various potential uses as electrode materials. The quasi-harmonic Debye approximation is a method used to analyze the stability of a system under high pressures and accounts for the temperature dependency of thermodynamics. It combines the quasi-harmonic approximation, which considers the anharmonicity of vibrations, with the Debye model, which describes the vibrational modes of a solid. This approach allows for a more accurate representation of the system's behavior at different temperatures and pressures. By implementing this approximation, researchers can gain insights into the stability and thermodynamic properties of materials under extreme conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...