Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(24): 25513-25538, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911776

RESUMEN

Within the scope of this review, our exploration spans diverse facets of amphiphilic glycolipid-based low-molecular-weight gelators (LMWGs). This journey explores glycolipid synthesis, self-assembly, and gelation with tailorable properties. It begins by examining the design of glycolipids and their influence on gel formation. Following this, a brief exploration of several gel characterization techniques adds another layer to the understanding of these materials. The final section is dedicated to unraveling the various applications of these glycolipid-based supramolecular gels. A meticulous analysis of available glycolipid gelators and their correlations with desired properties for distinct applications is a pivotal aspect of their investigation. As of the present moment, there exists a notable absence of a review dedicated exclusively to glycolipid gelators. This study aims to bridge this critical gap by presenting an overview that provides novel insights into their unique properties and versatile applications. This holistic examination seeks to contribute to a deeper understanding of molecular design, structural characteristics, and functional applications of glycolipid gelators by offering insights that can propel advancements in these converging scientific disciplines. Overall, this review highlights the diverse classifications of glycolipid-derived gelators and particularly emphasizes their capacity to form gels.

2.
Soft Matter ; 19(33): 6305-6313, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37555430

RESUMEN

Recovery, recycling, and reuse of metal waste have been re-intensified in the current era to build a sustainable future. In this context, gel nanocomposites were formulated by in situ reduction of gold within the low molecular weight gel matrix of synthetic glycolipid amphiphiles without using any external reducing/stabilizing agents. This strategy aroused the interest in formulating gel nanocomposites with preferential uptake of gold. The exclusive advantages owned by gold nanoparticle (GNP) embedded hydrogel offer an alternative to decorate the electrode surface without physical deposition/plating of the catalyst. Formation of GNP within the gel matrix was confirmed by the SPR peak in the UV-Visible spectrum. The particle size of 5-7 nm with zeta potential value in the range of -30.5 to -41.4 mV displayed good stability of nanoparticles in the gel matrix. Due to the encapsulation of nanoparticles within supramolecular assemblies of gel, a noteworthy increase in viscoelastic strength was observed, whereas the gelation behavior, melting temperature, and original fibrillar morphology of hydrogel remained intact. This hybrid gel exhibited good ionic conductivity (2.36 × 10-5 S cm-1) with appreciable ionic transport, remarkable oxygen reduction reaction (ORR) augmentation in reduction potential from 0 V to -0.12 V vs. Ag/AgCl as reference electrode, and excellent thermal stability in a wide temperature range. This green and efficient approach can pave the way for creating GNP-embedded hierarchical architecture that can act as bifunctional electrolyte/electrocatalyst material.

3.
ACS Biomater Sci Eng ; 8(3): 1103-1114, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35196000

RESUMEN

Designing of supramolecular hydro-/organogels having desired properties, biocompatibility, and stimuli responsiveness is a challenging task. Herein, the gelation ability of amphiphilic glycolipid-based gelators in a wide range of solvents is explored. The structure-function relationship was established by varying the chain length and polar headgroup size of amphiphilic gelators. The prepared hydro-/organogels were characterized by employing several techniques such as differential scanning calorimetry (DSC), rheology, field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), etc. The thermal stability of hydro-/organogels increased with an increase in chain length. Rheological analysis depicted that variation in chain length and headgroup size of amphiphilic gelators significantly affected the gel strength and stability. The self-assembled morphology of hydro-/organogel samples revealed the compact entangled fibrillar network structures. After comparing the energy-minimized molecular length with the d-spacing value obtained by XRD, interdigitated bilayer packing in the gel network was established. The bioactive encapsulation and enzymatic release study of hydro-/organogels portrayed their potential application in the biomedical field. To our delight, glycolipid 16M (C16 chain length) formed a molecular hydrogel with injectable and thixotropic behaviors. High critical strain value, thixotropy, injectability, thermoreversibility, and faster bioactive release for the 16M-W hydrogel proved crucial to predict its future applications. Overall, glycolipid amphiphiles designed by upholding proper hydrophilic-lipophilic balance can form multifunctional supramolecular hydrogels with excellent implementation in the drug delivery system.


Asunto(s)
Glucolípidos , Hidrogeles , Interacciones Hidrofóbicas e Hidrofílicas , Reología , Solventes/química
4.
J Food Sci Technol ; 58(11): 4420-4428, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34538925

RESUMEN

Economically motivated adulteration of expensive coconut oil with low cost oil, like palm kernel oil and palmolein is difficult to detect and quantify by available methods primarily due to their overlapping physicochemical properties with coconut oil. In the present work, a HPLC method has been developed to detect and quantify the degree of adulteration of coconut oil with palmolein and palm kernel oil based on triglyceride structure. The normalized area percentage of trilaurin (C36) among the three major TAG molecular species dilaurin-monocaprin/myristin-caprylin-laurin (C34), trilaurin (C36) and dilaurin-monomyristin (C38) of coconut oil was chosen as detection index for quantifying degree of adulteration of coconut oil with palm kernel oil, while the area ratio of dipalmitoyl-monoolein: trilaurin was chosen as detection index for quantifying adulteration of coconut oil with palmolein. The RP-HPLC based method developed in the present work is effective with a 2-4% minimum detection limit of adulterant oils and 78-98% detection accuracy depending on the degree of adulteration and types of oil.

5.
Langmuir ; 36(12): 3080-3088, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32134673

RESUMEN

Designing of multifunctional soft and smart materials from natural sources is a useful strategy for producing safer chemicals having potential applications in biomedical research and pharmaceutical industries. Herein, eight glycolipids with variation in unsaturation of hydrophobic tail and polar headgroup size were designed. The effect of unsaturation in the tail group and headgroup size on gelation ability, and mechanical and thermal stability of glycolipid hydro/organogels was studied to understand structure and property relationship. Glycolipids are functional amphiphilic molecules having potential applications in the field of drug delivery and metal removal. The encapsulation capacity and kinetic release behavior of hydrophobic/hydrophilic bioactives like curcumin/riboflavin from the hydrophobic/hydrophilic pockets of glycolipids hydro/organogels was examined. A significant observation was that the glucamine moiety of the glycolipid headgroup plays a vital role in removal of Cr and Cu from oil/water biphasic systems. Typical functions of the glycolipid hydrogels are metal chelation and enzyme-triggered release behavior, enabled them as promising material for Cr, Cu removal from edible oils and controlled release of water soluble/insoluble bioactives.

6.
Langmuir ; 34(47): 14347-14357, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30392368

RESUMEN

Biosourced surfactants are endeavored as a green alternative to biosurfactants and petrochemical surfactants having industrial utilization. Nine glycolipids with headgroup and chain length variation were derived from renewable resources like vegetable oils, carbohydrates, and amino acids. The concentration-dependent interfacial activity, foamability, wetting power, emulsification power, and solubilization capacities of glycolipids were investigated to provide a structure-activity relationship. Later, the metal flotation and emulsification experiments were performed. In general, for metal flotation, the surfactant should contain a hydrophobic tail, hydrophilic head, and chelating function. In the present investigation, it was observed that the headgroup of a glycolipid can serve as a hydrophilic head as well as perform a chelating function. Moreover, heat energy generated from the sunlight was utilized for metal flotation. Additionally, these glycolipids are capable to form stable sunflower oil-water (W/O and O/W) emulsions. The mechanical and thermal stabilities and hydrophobic chain length dependency of the prepared emulsions at different water volume fractions are explored. Furthermore, encapsulation and release of water-soluble (riboflavin and l-ascorbic acid) and oil-soluble (curcumin and α-tocopherol) bioactives in glycolipid emulsions were monitored. Thus, glycolipids under investigation had shown the possibility for pretreatment of chromium-containing wastewaters and bioactive-loaded emulsions toward the controlled release.

7.
Langmuir ; 34(30): 8875-8886, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29983075

RESUMEN

Encapsulation of a hydrophobic guest molecule inside a micelle and its stimuli-sensitive release is a useful strategy for target-specific drug delivery. Herein, nine biobased glycolipids were derived from plant sources. The influence of headgroup on the stability and aggregation pattern in water with different alkyl chain lengths was investigated to deduce the structure-property relationship. External factors, such as temperature, pH, and NaCl and urea concentrations, were employed to explore stimuli response of glycolipid nanoassemblies. Furthermore, solvatochromic dyes, such as pyrene, N-phenyl-1-naphthylamine, and curcumin, were utilized to examine hydrophobe loading capacities of these glycolipid assemblies. A fluorescence study was performed to investigate the enzyme-sensitive hydrophobe release. Interestingly, the pH-sensitive hydrophobic guests showed pH-responsive release from dynamic micelles. Finally, the synthesized glycolipids revealed their nanoassemblies as smart carriers for hydrophobic cargo.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glucolípidos/química , Micelas , Colorantes/química , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
8.
3 Biotech ; 8(6): 261, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29780683

RESUMEN

Bacillus tequilensis strain CH had been previously shown to produce a biosurfactant. In this study, chemical structure of the purified biosurfactant was determined by using high performance liquid chromatography and liquid chromatography-mass spectroscopy as a 10 amino acid cyclic lipopeptide (CL). The cyclic lipopeptide was found to be active against Anopheles culicifacies larvae with a LC50 of 110 µg/ml in 2 days. 1 ppm cadmium (Cd) which had a profound mutagenic effect on the cell division of onion (Allium cepa) root tip cell resulting in abnormal metaphase, abnormal anaphase and nuclei elongation was partially reversed in the presence of 0.1 mg/ml of CL (52% cells dividing normally and 8% with abnormal division) and was comparable to control experiment where no Cd was present. Thus, the CL described in this report may have applications in eliminating larvae from water repository systems and in reversing the effects of cadmium pollution.

9.
J Microbiol Biotechnol ; 24(4): 522-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24394192

RESUMEN

Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of Ag(+) ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of Ag(+) ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.


Asunto(s)
Antiinfecciosos/metabolismo , Sustancias Macromoleculares/metabolismo , Nanopartículas/metabolismo , Scenedesmus/metabolismo , Plata/metabolismo , Bacterias/efectos de los fármacos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica , Nanopartículas/química , Nanopartículas/ultraestructura , Análisis Espectral , Difracción de Rayos X
10.
J Mater Chem B ; 1(41): 5588-5601, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-32261183

RESUMEN

The present study offers the demonstration and rational design of two synthesized single chain pyridyl carboxylic acid (nicotinic acid) based amphiphilic gelators named the sodium salt of 2-dodecylpyridine-5-carboxylic acid (SDDPC) and the sodium salt of [2-dodecylpyridine-5-carboxylic]glycine (SDDPCG). The gelation abilities were tested in a series of organic solvents, by a number of physical methods including X-ray diffraction, FTIR spectroscopy, rheology, DSC, optical and electron microscopy. The minimum gelation concentration and gelation number of the gelators in different solvents were determined. No gelation was observed when pure solvents were employed. The gelation properties of these two compounds found that the gelation depends on H-bonding of the amide linkage. X-ray diffraction study indicates the presence of two recognizable morphologies for SDDPC in a gel-emulsion, whereas for SDDPCG a single type of aggregate is predominant. FTIR spectra suggest that the presence of intermolecular hydrogen bonding facilitates the gelation process. Rheological measurements demonstrated that the gel-emulsions are mechanically stable and exhibit typical viscoelastic properties. Optical microscopy images show a network structure in the gel phase and a fibril structure in the xerogel. SEM images confirmed the presence of network as well as a flex-like thick fibrous network for both the amphiphiles, forming three dimensional (3-D) networks. Both the gelators showed a remarkable response toward external pH. The gel-emulsions were used in the controlled and/or pH triggered release of entrapped (within the gel-emulsions) vitamin B12 at different pHs.

11.
J Phys Chem B ; 114(29): 9684-90, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20593766

RESUMEN

Two-photon absorption properties of 1,4-bis{4'-[N,N-bis(6''-trimethylammoniumhexyl)amino]styryl}benzene tetrabromide (C1) and its inclusion complexes (ICs) with cyclodextrins (CDs) have been studied. Upon complexation with CDs, the absorption spectra of C1 showed a slight red shift, whereas the emission spectra showed a blue shift with concomitant increase in the fluorescence quantum efficiency. A Stern-Volmer study using K(3)Fe(CN)(6) as a quencher revealed significant reduction in the photoinduced charge transfer quenching, in accord with the IC formation. Comparison of the spectroscopic results reveals that C1 forms increasingly more stable ICs in the order C1/beta-CD < C1/gamma-CD < C1/(3gamma:beta)-CD (gamma-CD/beta-CD 3:1, mole ratio). Moreover, the two-photon action cross section of C1 increased from 200 GM for C1 to 400 GM for C1/beta-CD, 460 GM for C1/gamma-CD, and 650 GM for C1/(3gamma:beta)-CD, respectively. Furthermore, the two-photon microscopy images of HeLa cells stained with C1 emitted strong two-photon excited fluorescence in the plasma membrane. These results provide a useful guideline for the development of efficient two-photon materials for bioimaging applications.


Asunto(s)
Ciclodextrinas/química , Fotones , Compuestos de Amonio Cuaternario/química , Estilbenos/química , Absorción , Ferricianuros/química , Células HeLa , Humanos , Teoría Cuántica , Espectrometría de Fluorescencia
12.
Macromol Rapid Commun ; 30(8): 633-8, 2009 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21706652

RESUMEN

A polymer-surfactant micellar complex has been studied as a fluorescence resonance energy transfer (FRET) donor to fluorescein-labeled DNA (ssDNA-Fl). In water, the molar absorptivity and fluorescence quantum efficiency of cationic poly(fluorene-co-phenylene) (c-PFP) are substantially increased in the presence of non-ionic surfactants. A TEM microscopic study shows the formation of a nanowire micellar complex of c-PFP and the surfactants. About a 400% enhancement of the FRET signal is measured in c-PFP/ssDNA-Fl with Brij 30, relative to that without surfactants. The signal amplification is successfully modulated using different types of non-ionic surfactants which perturb the complexation, fine-structure of the complex (i.e., donor-acceptor separation), and the resulting energy transfer process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA