Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 203: 106213, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36509382

RESUMEN

Transition metals such as copper and zinc are essential elements required for the survival of most organisms, from bacteria to humans. Yet, elevated levels of these elements are highly toxic. The Copper TRansporter protein family (CTRs) represents the only identified copper uptake proteins in eukaryotes and hence serves as key components for the maintenance of appropriate levels of the metal. Moreover, CTRs have been proposed to serve as an entry point into cells of certain cancer drugs and to constitute attractive drug-targets for novel antifungals. Nevertheless, the structure, function, and regulation of the CTRs remain elusive, limiting valuable information also for applied sciences. To this end, here we report procedures to isolate a range of CTR members using Saccharomyces cerevisiae as a production host, focusing on three homologs, human CTR1, human CTR2, and Candida albicans CTR. Using forms C-terminally-linked to a protease cleavage sequence, Green Fluorescent Protein (GFP), and a His-tag, assessment of the localization, quantification and purification was facilitated. Cellular accumulation of the proteins was investigated via live-cell imaging. Detergents compatible with acceptable solubilization yields were identified and fluorescence-detection size-exclusion-chromatography (F-SEC) revealed preferred membrane extraction conditions for the targets. For purification purposes, the solubilized CTR members were subjected to affinity chromatography and SEC, reaching near homogeneity. The quality and quantity of the CTRs studied will permit downstream efforts to uncover imperative biophysical aspects of these proteins, paving the way for subsequent drug-discovery studies.


Asunto(s)
Cobre , Saccharomyces cerevisiae , Humanos , Cobre/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transportador de Cobre 1/metabolismo , Proteínas Fluorescentes Verdes/metabolismo
2.
Anal Chem ; 94(34): 11831-11837, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35969432

RESUMEN

Measurement of protein-facilitated copper flux across biological membranes is a considerable challenge. Here, we demonstrate a straightforward microfluidic-derived approach for visualization and measurement of membranous Cu flux. Giant unilamellar vesicles, reconstituted with the membrane protein of interest, are prepared, surface-immobilized, and assessed using a novel quencher-sensor reporter system for detection of copper. With the aid of a syringe pump, the external buffer is exchanged, enabling consistent and precise exchange of solutes, without causing vesicle rupture or uneven local metal concentrations brought about by rapid mixing. This approach bypasses common issues encountered when studying heavy metal-ion flux, thereby providing a new platform for in vitro studies of metal homeostasis aspects that are critical for all cells, health, and disease.


Asunto(s)
Cobre , Microfluídica , Lípidos , Membranas , Proteínas , Liposomas Unilamelares
3.
Protein Sci ; 31(7): e4364, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35762724

RESUMEN

Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid-encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical ß-barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion-conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco-harboring pathogens.


Asunto(s)
Cobre , Proteínas de la Membrana , Transporte Biológico , Cobre/metabolismo , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Periplasma/metabolismo
5.
Structure ; 24(6): 906-17, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27133024

RESUMEN

Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides. Their overall activity is stimulated by ATP and downregulated by dATP via a genetically mobile ATP cone domain mediating the formation of oligomeric complexes with varying quaternary structures. The crystal structure and solution X-ray scattering data of a novel dATP-induced homotetramer of the Pseudomonas aeruginosa class I RNR reveal the structural bases for its unique properties, namely one ATP cone that binds two dATP molecules and a second one that is non-functional, binding no nucleotides. Mutations in the observed tetramer interface ablate oligomerization and dATP-induced inhibition but not the ability to bind dATP. Sequence analysis shows that the novel type of ATP cone may be widespread in RNRs. The present study supports a scenario in which diverse mechanisms for allosteric activity regulation are gained and lost through acquisition and evolutionary erosion of different types of ATP cone.


Asunto(s)
Adenosina Trifosfato/metabolismo , Pseudomonas aeruginosa/enzimología , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Ribonucleótido Reductasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA