Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(2): 22, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279992

RESUMEN

Mouse tumour models are extensively used as a pre-clinical research tool in the field of oncology, playing an important role in anticancer drugs discovery. Accordingly, in cancer genomics research, the demand for next-generation sequencing (NGS) is increasing, and consequently, the need for data analysis pipelines is likewise growing. Most NGS data analysis solutions to date do not support mouse data or require highly specific configuration for their use. Here, we present a genome analysis pipeline for mouse tumour NGS data including the whole-genome sequence (WGS) data analysis flow for somatic variant discovery, and the RNA-seq data flow for differential expression, functional analysis and neoantigen prediction. The pipeline is based on standards and best practices and integrates mouse genome references and annotations. In a recent study, the pipeline was applied to demonstrate the efficacy of low dose 6-thioguanine (6TG) treatment on low-mutation melanoma in a pre-clinical mouse model. Here, we further this study and describe in detail the pipeline and the results obtained in terms of tumour mutational burden (TMB) and number of predicted neoantigens, and correlate these with 6TG effects on tumour volume. Our pipeline was expanded to include a neoantigen analysis, resulting in neopeptide prediction and MHC class I antigen presentation evaluation. We observed that the number of predicted neoepitopes were more accurate indicators of tumour immune control than TMB. In conclusion, this study demonstrates the usability of the proposed pipeline, and suggests it could be an essential robust genome analysis platform for future mouse genomic analysis.


Asunto(s)
Melanoma , Tioguanina , Animales , Ratones , Tioguanina/farmacología , Genómica/métodos , Mutación , RNA-Seq
2.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36868570

RESUMEN

BACKGROUND: Loss of Ambra1 (autophagy and beclin 1 regulator 1), a multifunctional scaffold protein, promotes the formation of nevi and contributes to several phases of melanoma development. The suppressive functions of Ambra1 in melanoma are mediated by negative regulation of cell proliferation and invasion; however, evidence suggests that loss of Ambra1 may also affect the melanoma microenvironment. Here, we investigate the possible impact of Ambra1 on antitumor immunity and response to immunotherapy. METHODS: This study was performed using an Ambra1-depleted BrafV600E /Pten-/ - genetically engineered mouse (GEM) model of melanoma, as well as GEM-derived allografts of BrafV600E /Pten-/ - and BrafV600E /Pten-/ -/Cdkn2a-/ - tumors with Ambra1 knockdown. The effects of Ambra1 loss on the tumor immune microenvironment (TIME) were analyzed using NanoString technology, multiplex immunohistochemistry, and flow cytometry. Transcriptome and CIBERSORT digital cytometry analyses of murine melanoma samples and human melanoma patients (The Cancer Genome Atlas) were applied to determine the immune cell populations in null or low-expressing AMBRA1 melanoma. The contribution of Ambra1 on T-cell migration was evaluated using a cytokine array and flow cytometry. Tumor growth kinetics and overall survival analysis in BrafV600E /Pten-/ -/Cdkn2a-/ - mice with Ambra1 knockdown were evaluated prior to and after administration of a programmed cell death protein-1 (PD-1) inhibitor. RESULTS: Loss of Ambra1 was associated with altered expression of a wide range of cytokines and chemokines as well as decreased infiltration of tumors by regulatory T cells, a subpopulation of T cells with potent immune-suppressive properties. These changes in TIME composition were associated with the autophagic function of Ambra1. In the BrafV600E /Pten-/ -/Cdkn2a-/ - model inherently resistant to immune checkpoint blockade, knockdown of Ambra1 led to accelerated tumor growth and reduced overall survival, but at the same time conferred sensitivity to anti-PD-1 treatment. CONCLUSIONS: This study shows that loss of Ambra1 affects the TIME and the antitumor immune response in melanoma, highlighting new functions of Ambra1 in the regulation of melanoma biology.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Animales , Ratones , Autofagia , Movimiento Celular , Proliferación Celular , Citocinas , Microambiente Tumoral , Proteínas Adaptadoras Transductoras de Señales
3.
Oncoimmunology ; 12(1): 2158610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36545256

RESUMEN

Immune-checkpoint inhibitors (ICI) are highly effective in reinvigorating T cells to attack cancer. Nevertheless, a large subset of patients fails to benefit from ICI, partly due to lack of the cancer neoepitopes necessary to trigger an immune response. In this study, we used the thiopurine 6-thioguanine (6TG) to induce random mutations and thus increase the level of neoepitopes presented by tumor cells. Thiopurines are prodrugs which are converted into thioguanine nucleotides that are incorporated into DNA (DNA-TG), where they can induce mutation through single nucleotide mismatching. In a pre-clinical mouse model of a mutation-low melanoma cell line, we demonstrated that 6TG induced clinical-grade DNA-TG integration resulting in an improved tumor control that was strongly T cell dependent. 6TG exposure increased the tumor mutational burden, without affecting tumor cell proliferation and cell death. Moreover, 6TG treatment re-shaped the tumor microenvironment by increasing T and NK immune cells, making the tumors more responsive to immune-checkpoint blockade. We further validated that 6TG exposure improved tumor control in additional mouse models of melanoma. These findings have paved the way for a phase I/II clinical trial that explores whether treatment with thiopurines can increase the proportion of otherwise treatment-resistant cancer patients who may benefit from ICI therapy (NCT05276284).


Asunto(s)
Melanoma , Tioguanina , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico , Melanoma/tratamiento farmacológico , Melanoma/genética , Mutación , Tioguanina/farmacología , Tioguanina/uso terapéutico , Microambiente Tumoral , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto
4.
Viruses ; 13(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34835021

RESUMEN

It is generally believed that a successful Zika virus (ZIKV) vaccine should induce neutralizing antibodies against the ZIKV envelope (E) protein to efficiently halt viral infection. However, E-specific neutralizing antibodies have been implicated in a phenomenon called antibody-dependent enhancement, which represents an ongoing concern in the flavivirus-vaccinology field. In this report, we investigated the vaccination potential of replication-deficient adenoviral vectors encoding the ZIKV non-structural proteins 1 and 2 (NS1/NS2) and employed the strategy of linking the antigens to the MHC-II associated invariant chain (li) to improve immunogenicity and by inference, the level of protection. We demonstrated that li-linkage enhanced the production of anti-NS1 antibodies and induced an accelerated and prolonged polyfunctional CD8 T cell response in mice, which ultimately resulted in a high degree of protection against ZIKV infection of the CNS.


Asunto(s)
Antígenos Virales/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Femenino , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos C57BL , Vacunación , Proteínas no Estructurales Virales/inmunología , Vacunas Virales/inmunología , Virus Zika/inmunología , Infección por el Virus Zika/virología
5.
Front Immunol ; 11: 1977, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973802

RESUMEN

Zika virus (ZIKV), a mosquito-borne flavivirus, came into the spotlight in 2016 when it was found to be associated with an increased rate of microcephalic newborns in Brazil. The virus has further been recognized to cause neurologic complications in children and adults in the form of myelitis, encephalitis, acute disseminated encephalomyelitis (ADEM) and Guillain Barre Syndrome in a fraction of infected individuals. With the ultimate goal of identifying correlates of protection to guide the design of an effective vaccine, the study of the immune response to ZIKV infection has become the focus of research worldwide. Both innate and adaptive immune responses seem to be essential for controlling the infection. Induction of sufficient levels of neutralizing antibodies has been strongly correlated with protection against reinfection in various models, while the role of CD8 T cells as antiviral effectors in the CNS has been controversial. In an attempt to improve our understanding regarding the role of ZIKV-induced CD8 T cells in protective immunity inside the CNS, we have expanded on previous studies in intracranially infected mice. In a recent study, we have demonstrated that, peripheral ZIKV infection in adult C57BL/6 mice induces a robust CD8 T cell response that peaks within a week. In the present study, we used B cell deficient as well as wild-type mice to show that there is a race between CXCR3-dependent recruitment of the effector CD8 T cells and local ZIKV replication, and that CD8 T cells are capable of local viral control if they arrive in the brain early after viral invasion, in appropriate numbers and differentiation state. Our data highlight the benefits of considering this subset when designing vaccines against Zika virus.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Enfermedades Virales del Sistema Nervioso Central/inmunología , Enfermedades Virales del Sistema Nervioso Central/virología , Interacciones Huésped-Patógeno/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , Virus Zika/inmunología , Animales , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/virología , Linfocitos T CD8-positivos/metabolismo , Enfermedades Virales del Sistema Nervioso Central/diagnóstico , Enfermedades Virales del Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunización , Inmunofenotipificación , Recuento de Linfocitos , Depleción Linfocítica , Ratones , Ratones Noqueados , Carga Viral , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/metabolismo
6.
Front Immunol ; 11: 595707, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33603737

RESUMEN

Expression of programmed cell death-1 receptor (PD-1) has traditionally been linked to T-cell exhaustion, as signaling via PD-1 dampens the functionality of T-cells upon repetitive antigen exposures during chronic infections. However, resent findings pointing to the involvement of PD-1 both in T-cell survival and in restraining immunopathology, challenge the concept of PD-1 solely as marker for T-cell exhaustion. Tissue resident memory T cells (Trms) hold unique effector qualities, but within a delicate organ like the CNS, these protective abilities could potentially be harmful. In contrast to their counterparts in many other tissues, brain derived CD8+ Trms have been found to uniformly and chronically express PD-1. In this study we utilized a recently established model system for generating CNS Trms in order to improve our understanding regarding the role of PD-1 expression by Trms inside the CNS. By intracerebral (i.c.) inoculation with a non-replicating adeno-viral vector, we induced a PD-1hi CD8+ T cell memory population within the CNS. We found that PD-1 expression lowered the severity of clinical disease associated with the i.c. inoculation. Furthermore, high levels of PD-L1 expression were found on the infiltrating monocytes and macrophages as well as on the resident microglia, oligodendrocytes and astrocytes during the acute phase of the response. Additionally, we showed that the intensity of PD-1 expression correlates with local antigen encounter and found that PD-1 expression was associated with decreased CD8+ T cell memory formation in the CNS despite an increased number of infiltrating CD8+ T cells. Most importantly, our experiments revealed that despite expression of PD-1 and several additional markers linked to T-cell exhaustion, Tim-3, Lag-3 and CD39, the cells did not show signs of limited effector capacity. Collectively, these results endorse the increasing amount of evidence pointing to an immune-modifying role for PD-1 expression within the CNS, a mechanism we found to correlate with local antigen exposure.


Asunto(s)
Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Antígenos Virales/inmunología , Femenino , Memoria Inmunológica , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Muerte Celular Programada 1/genética
7.
Front Immunol ; 10: 351, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30886617

RESUMEN

While the brain is considered an immune-privileged site, the CNS may nevertheless be the focus of immune mediated inflammation in the case of infection and certain autoimmune diseases, e.g., multiple sclerosis. As in other tissues, it has been found that acute T-cell infiltration may be followed by establishment of persistent local T-cell memory. To improve our understanding regarding the regulation of putative tissue resident memory T (Trm) cells in CNS, we devised a new model system for studying the generation of Trm cells in this site. To this purpose, we exploited the fact that the CNS may be a sanctuary for adenoviral infection, and to minimize virus-induced disease, we chose replication-deficient adenoviruses for infection of the CNS. Non-replicating adenoviruses are known to be highly immunogenic, and our studies demonstrate that intracerebral inoculation causes marked local T-cell recruitment, which is followed by persistent infiltration of the CNS parenchyma by antigen specific CD8+ T cells. Phenotypical analysis of CNS infiltrating antigen specific CD8+ T cells was consistent with these cells being Trms. Regarding the long-term stability of the infiltrate, resident CD8+ T cells expressed high levels of the anti-apoptotic molecule Bcl-2 as well as the proliferation marker Ki-67 suggesting that the population is maintained through steady homeostatic proliferation. Functionally, memory CD8+ T cells from CNS matched peripheral memory cells with regard to capacity for ex vivo cytotoxicity and cytokine production. Most importantly, our experiments revealed a key role for local antigen encounter in the establishment of sustained CD8+ T-cell memory in the brain. Inflammation in the absence of cognate antigen only led to limited and transient infiltration by antigen specific CD8+ T cells. Together these results indicate that memory CD8+ T cells residing in the CNS predominantly mirror previous local infections and immune responses to local autoantigens.


Asunto(s)
Antígenos/inmunología , Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Animales , Apoptosis/inmunología , Proliferación Celular/fisiología , Citocinas/inmunología , Femenino , Homeostasis/inmunología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Virosis/inmunología
8.
Viruses ; 11(1)2019 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-30621317

RESUMEN

The worldwide attention that the Zika virus (ZIKV) attracted, following its declaration as a Public Health Emergency of International concern by WHO in 2016, has led to a large collective effort by the international scientific community to understand its biology. Despite the mild symptoms caused by ZIKV in most infected people, the virus displays a number of worrying features, such as its ability to cause transplacental infection, fetal abnormalities and vector independent transmission through body fluids. In addition, the virus has been associated with the induction of Guillain-Barre syndrome in a number of infected individuals. With travelling, the virus has spread outside the original ZIKV endemic areas making it imperative to find ways to control it. Thus far, the large number of animal models developed to study ZIKV pathogenesis have proven to be valuable tools in understanding how the virus replicates and manifests itself in the host, its tissue tropism and the type of immune responses it induces. Still, vital questions, such as the molecular mechanisms of ZIKV persistence and the long-term consequences of ZIKV infection in the developing brain, remain unanswered. Here, we reviewed and discussed the major and most recent findings coming from animal studies and their implications for a ZIKV vaccine design.


Asunto(s)
Modelos Animales de Enfermedad , Infección por el Virus Zika/patología , Animales , Humanos , Ratones , Tropismo Viral , Vacunas Virales , Virus Zika/patogenicidad , Infección por el Virus Zika/inmunología
9.
Front Immunol ; 9: 593, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29623081

RESUMEN

The association between recent Zika virus (ZIKV) infection and neurological complications, microcephaly in the fetus, and Guillain-Barré syndrome in adults underscores the necessity for a protective vaccine. Rational vaccine development requires an in-depth understanding of the mechanisms which could protect against infection with this virus. However, so far, such an analysis has been hampered by the absence of a suitable small animal model. Unlike the situation in humans, ZIKV only replicates effectively in the peripheral organs of mice, if type I IFN signaling is interrupted. As type I IFN also impacts the adaptive immune response, mice with such a defect are not optimal for a comprehensive immunological analysis. In this report, we show that even in wild-type (WT) mice i.c. infection with low doses of virus causes marked local virus replication and lethal encephalitis in naïve mice. Furthermore, peripheral infection of WT mice with low doses of virus induces a significant immune response, which provides long-lasting protection of WT mice from a fatal outcome of subsequent i.c. challenge. Therefore, combining peripheral priming with later i.c. challenge represents a new approach for studying the adaptive immune response to ZIKV in mice with an intact type I IFN response. In this study, we focused on the mechanisms underlying resistance to reinfection. Using a combination of adoptive transfer, antibody-based cell depletion, and gene targeting, we show that the key protective factor in type I IFN replete mice is humoral immunity. CD8 T cells are not essential in mice with preformed specific antibodies, but under conditions where initial antibody levels are low, effector CD8 T cells may play a role as a back-up system. These results have important implications for our understanding of natural immunity to ZIKV infection and for Zika vaccine design.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad , Interferón Tipo I/metabolismo , Transducción de Señal , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/metabolismo , Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Interacciones Huésped-Patógeno/genética , Inmunización , Ratones , Ratones Noqueados , Modelos Biológicos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Infección por el Virus Zika/genética , Infección por el Virus Zika/virología
10.
Sci Rep ; 6: 38666, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929135

RESUMEN

Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal priming. Replication deficient adenoviral vectors have been demonstrated to induce potent CD8+ T-cell response in mice, primates and humans. The aim of the present study was therefore to assess whether replication-deficient adenovectors could overcome the risk of overwhelming antigen stimulation during the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate that memory CD8+ T cells induced by adenoviral vectors in infant mice are of good quality and match those elicited in the adult host.


Asunto(s)
Adenoviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Vectores Genéticos/inmunología , Memoria Inmunológica , Vacunación , Vacunas/inmunología , Infecciones por Adenoviridae/inmunología , Infecciones por Adenoviridae/prevención & control , Factores de Edad , Animales , Biomarcadores , Linfocitos T CD8-positivos/metabolismo , Femenino , Vectores Genéticos/administración & dosificación , Inmunidad , Inmunofenotipificación , Activación de Linfocitos , Ratones , Fenotipo , Vacunación/métodos , Vacunas/administración & dosificación , Vacunas/genética
11.
Sci Rep ; 6: 35033, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27713532

RESUMEN

Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2b mice challenged with an influenza A strain mutated in the dominant NP366 epitope were not efficiently protected. To address this problem, we envision the use of a cocktail of adenovectors targeting different internal proteins of influenza A virus. Consequently, we investigated the possibility of using PB1 as a target for an adenovector-based vaccine against influenza A. Our results showed that PB1 is not as immunogenic as the NP protein. However, by tethering PB1 to the murine invariant chain we were able to circumvent this problem and raise quite high numbers of PB1-specific CD8+ T cells in the circulation. Nevertheless, mice immunized against PB1 were not as efficiently protected against influenza A challenge as similarly NP-vaccinated animals. The reason for this is not a difference in the quality of the primed cells, nor in functional avidity. However, under similar conditions of immunization fewer PB1-specific cells were recruited to the airways, and surface expression of the dominant PB1 peptide, PB1703, was less stable than in the case of NP366.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Proteínas Virales/metabolismo , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Dependovirus/genética , Dependovirus/inmunología , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Ratones , Mutación , Proteínas de la Nucleocápside , Proteínas de Unión al ARN/genética , Proteínas del Núcleo Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...