Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Life Sci ; 306: 120830, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35872006

AIMS: Septic cardiomyopathy is a severe complication of sepsis and septic shock. This study aimed to evaluate the role of thrombomodulin and its lectin-like domain (LLD-TM) in the development of septic cardiomyopathy and the link between LLD-TM, HMGB-1, and toll-like receptors 2/4 (TLR 2/4) to intracellular mechanisms resulting in reduced cardiac function. MATERIALS AND METHODS: Sepsis was induced using a polymicrobial peritoneal infection model in wildtype and mice lacking the lectin-like domain of thrombomodulin (TMLeD/LeD), and severity of disease and cardiac function was compared. Cell cultures of cardiomyocytes were prepared from hearts harvested from wildtype and TMLeD/LeD mice. Cultures of neonatal cardiomyocytes were transfected with complete human thrombomodulin or human thrombomodulin deficient of LLD-TM and when TLR-2 and/or TLR-4 were blocked. All cultures were challenged with inflammatory stimuli. KEY FINDINGS: Lack of the LLD-TM results in a significant increase in severity of disease, decreased survival and impaired cardiac function in septic mice. In vivo and in vitro analyses of cardiomyocytes displayed high levels of inflammatory cytokines causing cardio-depression. In vitro results showed a strong correlation between elevated HMGB-1 levels and elevated troponin-1 levels. No connection was found between HMGB-1 and TLR-2 and/or -4 signalling pathways. Phospholamban mediated dysregulation of calcium homeostasis resulted in a general impairment after sepsis induction, but showed no connection to LLD-TM. SIGNIFICANCE: Lack of LLD-TM results in an increase in general severity of disease, decreased survival and impaired cardiac function in sepsis. TLR-2 and TLR 4 do not participate as mediating factors in the development of septic cardiomyopathy.


Cardiomyopathies , Sepsis , Animals , Cardiomyopathies/etiology , HMGB Proteins , Humans , Lectins , Mice , Sepsis/complications , Thrombomodulin/metabolism , Toll-Like Receptor 2
2.
J Neuroinflammation ; 17(1): 292, 2020 Oct 07.
Article En | MEDLINE | ID: mdl-33028343

BACKGROUND: Sepsis-associated encephalopathy (SAE) is an early and frequent event of infection-induced systemic inflammatory response syndrome. Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and inflammation-related microglial activity. In homeotherms, variations in ambient temperature (Ta) outside the thermoneutral zone lead to thermoregulatory responses, mainly driven by a gradually increasing sympathetic activity, and may affect disease severity. We hypothesized that thermoregulatory response to hypothermia (reduced Ta) aggravates SAE in PI3Kγ-dependent manner. METHODS: Experiments were performed in wild-type, PI3Kγ knockout, and PI3Kγ kinase-dead mice, which were kept at neutral (30 ± 0.5 °C) or moderately lowered (26 ± 0.5 °C) Ta. Mice were exposed to lipopolysaccharide (LPS, 10 µg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection)-evoked systemic inflammatory response (SIR) and monitored 24 h for thermoregulatory response and blood-brain barrier integrity. Primary microglial cells and brain tissue derived from treated mice were analyzed for inflammatory responses and related cell functions. Comparisons between groups were made with one-way or two-way analysis of variance, as appropriate. Post hoc comparisons were made with the Holm-Sidak test or t tests with Bonferroni's correction for adjustments of multiple comparisons. Data not following normal distribution was tested with Kruskal-Wallis test followed by Dunn's multiple comparisons test. RESULTS: We show that a moderate reduction of ambient temperature triggers enhanced hypothermia of mice undergoing LPS-induced systemic inflammation by aggravated SAE. PI3Kγ deficiency enhances blood-brain barrier injury and upregulation of matrix metalloproteinases (MMPs) as well as an impaired microglial phagocytic activity. CONCLUSIONS: Thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range exacerbates LPS-induced blood-brain barrier injury and neuroinflammation. PI3Kγ serves a protective role in suppressing release of MMPs, maintaining microglial motility and reinforcing phagocytosis leading to improved brain tissue integrity. Thus, preclinical research targeting severe brain inflammation responses is seriously biased when basic physiological prerequisites of mammal species such as preferred ambient temperature are ignored.


Body Temperature Regulation/physiology , Class Ib Phosphatidylinositol 3-Kinase/deficiency , Lipopolysaccharides/toxicity , Sepsis-Associated Encephalopathy/enzymology , Sepsis-Associated Encephalopathy/physiopathology , Animals , Animals, Newborn , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/enzymology , Blood-Brain Barrier/physiopathology , Body Temperature/drug effects , Body Temperature/physiology , Body Temperature Regulation/drug effects , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sepsis-Associated Encephalopathy/chemically induced
3.
Basic Res Cardiol ; 114(3): 26, 2019 04 23.
Article En | MEDLINE | ID: mdl-31016449

Sepsis-induced myocardial depression (SIMD) is an early and frequent consequence of the infection-induced systemic inflammatory response syndrome. In homiotherms, variations in ambient temperature (Ta) outside the thermoneutral zone induce thermoregulatory responses mainly driven by a gradually increased sympathetic activity, which may affect disease severity. We hypothesized that thermoregulatory responses upon reduced Ta exposition aggravate SIMD in mice. Mice were kept at neutral Ta (30 ± 0.5 °C), moderately lowered Ta (26 ± 0.5 °C) or markedly lowered Ta (22 ± 0.5 °C), exposed to lipopolysaccharide- (LPS, 10 µg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection) evoked shock and monitored for survival, cardiac autonomic nervous system function and left ventricular performance. Primary adult cardiomyocytes and heart tissue derived from treated mice were analyzed for inflammatory responses and signaling pathways of myocardial contractility. We show that a moderate reduction of Ta to 26 °C led to a 40% increased mortality of LPS-treated mice when compared to control mice and that a marked reduction of Ta to 22 °C resulted in an early mortality of all mice. Mice kept at 26 °C exhibited increased heart rate and altered indices of heart rate variability (HRV), indicating sympathovagal imbalance along with aggravated LPS-induced SIMD. This SIMD was associated with reduced myocardial ß-adrenergic receptor expression and suppressed adrenergic signaling, as well as with increased myocardial iNOS expression, nitrotyrosine formation and leukocyte invasion as well as enhanced apoptosis and appearance of contraction band necrosis in heart tissue. While ineffective separately, combined treatment with the ß2-adrenergic receptor (AR) antagonist ICI 118551 (10 ng/gbw) and the inducible nitric oxide synthase (iNOS) inhibitor 1400 W (5 µg/gbw) reversed the increase in LPS-induced mortality and aggravation of SIMD at reduced Ta. Thus, consequences of thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range increase the mortality from LPS-evoked shock and markedly prolong impaired myocardial function. These changes are mitigated by combined ß2-AR and iNOS inhibition.


Autonomic Nervous System/physiopathology , Body Temperature Regulation , Heart Diseases/chemically induced , Heart/innervation , Housing, Animal , Myocardial Contraction , Systemic Inflammatory Response Syndrome/chemically induced , Temperature , Animals , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Heart Diseases/metabolism , Heart Diseases/physiopathology , Hemodynamics , Inflammation Mediators/metabolism , Lipopolysaccharides , Male , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/physiopathology
4.
Int J Mol Sci ; 18(8)2017 Jul 25.
Article En | MEDLINE | ID: mdl-28757567

Pulmonary hypertension (PH) is a heterogeneous disorder associated with a poor prognosis. Thus, the development of novel treatment strategies is of great interest. The enzyme arginase (Arg) is emerging as important player in PH development. The aim of the current study was to determine the expression of ArgI and ArgII as well as the effects of Arg inhibition in a rat model of PH. PH was induced in 35 Sprague-Dawley rats by monocrotaline (MCT, 60 mg/kg as single-dose). There were three experimental groups: sham-treated controls (control group, n = 11), MCT-induced PH (MCT group, n = 11) and MCT-induced PH treated with the Arg inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA; MCT/NorNoha group, n = 13). ArgI and ArgII expression was determined by immunohistochemistry and Western blot. Right ventricular systolic pressure (RVPsys) was measured and lung tissue remodeling was determined. Induction of PH resulted in an increase in RVPsys (81 ± 16 mmHg) compared to the control group (41 ± 15 mmHg, p = 0.002) accompanied by a significant elevation of histological sum-score (8.2 ± 2.4 in the MCT compared to 1.6 ± 1.6 in the control group, p < 0.001). Both, ArgI and ArgII were relevantly expressed in lung tissue and there was a significant increase in the MCT compared to the control group (p < 0.01). Arg inhibition resulted in a significant reduction of RVPsys to 52 ± 19 mmHg (p = 0.006) and histological sum-score to 5.8 ± 1.4 compared to the MCT group (p = 0.022). PH leads to increased expression of Arg. Arg inhibition leads to reduction of RVPsys and diminished lung tissue remodeling and therefore represents a potential treatment strategy in PH.


Arginase/metabolism , Arginine/analogs & derivatives , Hypertension, Pulmonary/drug therapy , Monocrotaline/adverse effects , Animals , Arginine/administration & dosage , Arginine/pharmacology , Disease Models, Animal , Gene Expression Regulation, Enzymologic/drug effects , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Humans , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/physiopathology , Lung/drug effects , Lung/enzymology , Rats, Sprague-Dawley , Treatment Outcome
5.
Oncotarget ; 7(49): 81241-81254, 2016 Dec 06.
Article En | MEDLINE | ID: mdl-27835899

Pulmonary hypertension (PH) is associated with vasoconstriction and remodelling. We studied lung tissue remodelling in a rat model of PH with special focus on histology and extracellular matrix (ECM) remodelling. After induction of PH by monocrotaline, lung tissue was analysed histologically, by gene expression analysis and immunofluorescence labelling of ED-A domain containing fibronectin (ED-A+ Fn), B domain containing tenascin-C (B+ Tn-C) as well as alpha-smooth muscle actin (α-SMA). Serum concentrations of ED-A+ Fn were determined by ELISA. Systolic right ventricular pressure (RVPsys) values were significantly elevated in PH (n = 18; 75 ± 26.4 mmHg) compared to controls (n = 10; 29 ± 19.3 mmHg; p = 0.015). The histological sum-score was significantly increased in PH (8.0 ± 2.2) compared to controls (2.5 ± 1.6; p < 0.001). Gene expression analysis revealed relevant induction of several key genes of extracellular matrix remodelling. Increased protein deposition of ED-A+ Fn but not of B+ Tn-C and α-SMA in lung tissue was found in PH (2.88 ± 3.19 area%) compared to controls (1.32 ± 0.16 area%; p = 0.030). Serum levels of ED-A+ Fn were significantly higher in PH (p = 0.007) positively correlating with RVPsys (r = 0.618, p = 0.019). We here present a novel histological scoring system to assess lung tissue remodelling in PH. Gene expression analysis revealed induction of candidate genes involved in collagen matrix turnover, fibrosis and vascular remodelling. The stable increased tissue deposition of ED-A+ Fn in PH as well as its dynamics in serum suggests a role as a promising novel biomarker and potential therapeutic target.


Extracellular Matrix Proteins/genetics , Extracellular Matrix/genetics , Hypertension, Pulmonary/genetics , Lung/metabolism , Monocrotaline , Vascular Remodeling/genetics , Actins/genetics , Actins/metabolism , Animals , Disease Models, Animal , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Extracellular Matrix Proteins/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Fibrosis , Gene Expression Profiling/methods , Gene Expression Regulation , Hemodynamics , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Lung/pathology , Oligonucleotide Array Sequence Analysis , Rats, Sprague-Dawley , Severity of Illness Index , Tenascin/genetics , Tenascin/metabolism
6.
Cytotechnology ; 68(5): 1897-907, 2016 Oct.
Article En | MEDLINE | ID: mdl-27380966

Hypertrophic growth is a response of the heart to increased mechanical load or physiological stress. Thereby, cardiomyocytes grow in length and/or width to maintain cardiac pump function. Major signaling pathways involved in cardiomyocyte growth and remodeling have been identified during recent years including calcineurin-NFAT and PI3K-Akt signaling. Modulation of these pathways is of certain interest for therapeutic treatment of cardiac hypertrophy. However, quantification and characterization of hypertrophy in response to different stimuli or modulators is difficult. This study aims to test different read-out systems for detection and quantification of differences in hypertrophic growth in response to prohypertrophic stimuli. Real-time impedance measurements allowed the detection of distinct differences in hypertrophic growth in response to endothelin, norepinephrine, phenylephrine or BIO, which were not observable by other methods such as flow cytometry. Endothelin treatment induced a rapid and strong peak in the impedance signal concomitant with a massive reorientation of the actin cytoskeleton. Changes in expression of hypertrophy-associated genes were detected and stabilization of ß-catenin was identified as a common response to all hypertrophic stimuli used in this study. Hypertrophic growth was blocked by the PI3K/mTOR inhibitor PI-103.

7.
Cardiovasc Res ; 108(2): 243-53, 2015 Nov 01.
Article En | MEDLINE | ID: mdl-26334033

AIMS: Sepsis-induced myocardial depression (SIMD), an early and frequent event of infection-induced systemic inflammatory response syndrome (SIRS), is characterized by reduced contractility irrespective of enhanced adrenergic stimulation. Phosphoinositide-3 kinase γ (PI3Kγ) is known to prevent ß-adrenergic overstimulation via its scaffold function by activating major cardiac phosphodiesterases and restricting cAMP levels. However, the role of PI3Kγ in SIRS-induced myocardial depression is unknown. This study is aimed at determining the specific role of lipid kinase-dependent and -independent functions of PI3Kγ in the pathogenesis of SIRS-induced myocardial depression. METHODS AND RESULTS: PI3Kγ knockout mice (PI3Kγ(-/-)), mice expressing catalytically inactive PI3Kγ (PI3Kγ(KD/KD)), and wild-type mice (P3Kγ(+/+)) were exposed to lipopolysaccharide (LPS)-induced systemic inflammation and assessed for survival, cardiac autonomic nervous system function, and left ventricular performance. Additionally, primary adult cardiomyocytes were used to analyse PI3Kγ effects on myocardial contractility and inflammatory response. SIRS-induced adrenergic overstimulation induced a transient hypercontractility state in PI3Kγ(-/-) mice, followed by reduced contractility. In contrast, P3Kγ(+/+) mice and PI3Kγ(KD/KD) mice developed an early and ongoing myocardial depression despite exposure to similarly increased catecholamine levels. Compared with cells from P3Kγ(+/+) and PI3Kγ(KD/KD) mice, cardiomyocytes from PI3Kγ(-/-) mice showed an enhanced and prolonged cAMP-mediated signalling upon norepinephrine and an intensified LPS-induced proinflammatory response characterized by nuclear factor of activated T-cells-mediated inducible nitric oxide synthase up-regulation. CONCLUSIONS: This study reveals the lipid kinase-independent scaffold function of PI3Kγ as a mediator of SIMD during inflammation-induced SIRS. Activation of cardiac phosphodiesterases via PI3Kγ is shown to restrict myocardial hypercontractility early after SIRS induction as well as the subsequent inflammatory responses.


Cardiomyopathies/enzymology , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Cyclic AMP/metabolism , Nitric Oxide Synthase Type II/metabolism , Sepsis/complications , Animals , Autonomic Nervous System/physiopathology , Calcium/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/physiopathology , Cells, Cultured , Mice, Inbred C57BL , Mice, Knockout , NFATC Transcription Factors/metabolism , Ventricular Function, Left
...