Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Food Chem Toxicol ; 157: 112577, 2021 Nov.
Article En | MEDLINE | ID: mdl-34563633

Trehalose is added in drug formulations to act as fillers or improve aerosolization performance. Its characteristics as a carrier molecule have been explored; however, the fate of trehalose in human airway tissues has not been thoroughly investigated. Here, we investigated the fate of nebulized trehalose using in vitro human air-liquid bronchial epithelial cultures. First, a tracing experiment was conducted using 13C12-trehalose; we measured trehalose distribution in different culture compartments (apical surface liquid, epithelial culture, and basal side medium) at various time points following acute exposure to 13C12-labeled trehalose. We found that 13C12-trehalose was metabolized into 13C6-glucose. The data was then used to model the kinetics of trehalose disappearance from the apical surface of bronchial cultures. Secondly, we evaluated the potential adverse effects of nebulized trehalose on the bronchial cultures after they were acutely exposed to nebulized trehalose up to a level just below its solubility limit (50 g/100 g water). We assessed the ciliary beating frequency and histological characteristics. We found that nebulized trehalose did not lead to marked alteration in ciliary beating frequency and morphology of the epithelial cultures. The in vitro testing approach used here may enable the early selection of excipients for future development of inhalation products.


Bronchi/drug effects , Respiratory Mucosa/drug effects , Trehalose/pharmacology , Aerosols/administration & dosage , Aerosols/pharmacokinetics , Aerosols/pharmacology , Bronchi/metabolism , Cells, Cultured , Humans , Nebulizers and Vaporizers , Respiratory Mucosa/metabolism , Trehalose/administration & dosage , Trehalose/pharmacokinetics
2.
Front Toxicol ; 3: 634035, 2021.
Article En | MEDLINE | ID: mdl-35295134

Mice, especially A/J mice, have been widely employed to elucidate the underlying mechanisms of lung tumor formation and progression and to derive human-relevant modes of action. Cigarette smoke (CS) exposure induces tumors in the lungs; but, non-exposed A/J mice will also develop lung tumors spontaneously with age, which raises the question of discriminating CS-related lung tumors from spontaneous ones. However, the challenge is that spontaneous tumors are histologically indistinguishable from the tumors occurring in CS-exposed mice. We conducted an 18-month inhalation study in A/J mice to assess the impact of lifetime exposure to Tobacco Heating System (THS) 2.2 aerosol relative to exposure to 3R4F cigarette smoke (CS) on toxicity and carcinogenicity endpoints. To tackle the above challenge, a 13-gene gene signature was developed based on an independent A/J mouse CS exposure study, following by a one-class classifier development based on the current study. Identifying gene signature in one data set and building classifier in another data set addresses the feature/gene selection bias which is a well-known problem in literature. Applied to data from this study, this gene signature classifier distinguished tumors in CS-exposed animals from spontaneous tumors. Lung tumors from THS 2.2 aerosol-exposed mice were significantly different from those of CS-exposed mice but not from spontaneous tumors. The signature was also applied to human lung adenocarcinoma gene expression data (from The Cancer Genome Atlas) and discriminated cancers in never-smokers from those in ever-smokers, suggesting translatability of our signature genes from mice to humans. A possible application of this gene signature is to discriminate lung cancer patients who may benefit from specific treatments (i.e., EGFR tyrosine kinase inhibitors). Mutational spectra from a subset of samples were also utilized for tumor classification, yielding similar results. "Landscaping" the molecular features of A/J mouse lung tumors highlighted, for the first time, a number of events that are also known to play a role in human lung tumorigenesis, such as Lrp1b mutation and Ros1 overexpression. This study shows that omics and computational tools provide useful means of tumor classification where histopathological evaluation alone may be unsatisfactory to distinguish between age- and exposure-related lung tumors.

3.
Curr Res Toxicol ; 1: 56-69, 2020 Jun 10.
Article En | MEDLINE | ID: mdl-34345837

In vitro models of the human lung play an essential role in evaluating the toxicity of inhaled compounds and understanding the development of respiratory diseases. Three-dimensional (3D) organotypic models derived from lung basal epithelial cells and grown at the air-liquid interface resemble human airway epithelium in multiple aspects, including morphology, cell composition, transcriptional profile, and xenobiotic metabolism. Whether the different characteristics of basal cell donors have an impact on model characteristics and responses remains unknown. In addition, studies are often conducted with 3D cultures from one donor, assuming a representative response on the population level. Whether this assumption is correct requires further investigation. In this study, we compared the morphology and functionality of 3D organotypic bronchial and small airway cultures from different donors at different weeks after air-lift to assess the interdonor variability in these parameters. The thickness, cell type composition, and transepithelial electrical resistance varied among the donors and over time after air-lift. Cilia beating frequency increased in response to isoproterenol treatment in both culture types, independent of the donor. The cultures presented low basal cytochrome P450 (CYP) 1A1/1B1 activity, but 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment induced CYP1A1/1B1 activity regardless of the donor. In conclusion, lung epithelial cultures prepared from different donors present diverse morphology but similar functionality and metabolic activity, with certain variability in their response to stimulation.

4.
Chem Biol Interact ; 315: 108887, 2020 Jan 05.
Article En | MEDLINE | ID: mdl-31705857

AIM: To investigate the molecular, structural, and functional impact of aerosols from candidate modified risk tobacco products (cMRTP), the Carbon Heated Tobacco Product (CHTP) 1.2 and Tobacco Heating System (THS) 2.2, compared with that of mainstream cigarette smoke (CS) on the cardiovascular system of ApoE-/- mice. METHODS: Female ApoE-/- mice were exposed to aerosols from THS 2.2 and CHTP 1.2 or to CS from the 3R4F reference cigarette for up to 6 months at matching nicotine concentrations. A Cessation and a Switching group (3 months exposure to 3R4F CS followed by filtered air or CHTP 1.2 for 3 months) were included. Cardiovascular effects were investigated by echocardiographic, histopathological, immunohistochemical, and transcriptomics analyses. RESULTS: Continuous exposure to cMRTP aerosols did not affect atherosclerosis progression, heart function, left ventricular (LV) structure, or the cardiovascular transcriptome. Exposure to 3R4F CS triggered atherosclerosis progression, reduced systolic ejection fraction and fractional shortening, caused heart LV hypertrophy, and initiated significant dysregulation in the transcriptomes of the heart ventricle and thoracic aorta. Importantly, the structural, functional, and molecular changes caused by 3R4F CS were improved in the smoking cessation and switching groups. CONCLUSION: Exposure to cMRTP aerosols lacked most of the CS exposure-related functional, structural, and molecular effects. Smoking cessation or switching to CHTP 1.2 aerosol caused similar recovery from the 3R4F CS effects in the ApoE-/- model, with no further acceleration of plaque progression beyond the aging-related rate.


Aerosols/adverse effects , Apolipoproteins E/metabolism , Carbon/adverse effects , Cardiovascular System/drug effects , Nicotiana/adverse effects , Smoke/adverse effects , Tobacco Products/adverse effects , Animals , Aorta, Thoracic/drug effects , Atherosclerosis/metabolism , Cardiovascular System/metabolism , Female , Heating/adverse effects , Inhalation Exposure/adverse effects , Lung/drug effects , Lung/metabolism , Mice , Smoking/adverse effects , Transcriptome/drug effects
...