Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(8): 5580-5596, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38347659

RESUMEN

Under mild blue-light irradiation, α-acylated saturated heterocycles undergo a photomediated one-atom ring contraction that extrudes a heteroatom from the cyclic core. However, for nitrogenous heterocycles, this powerful skeletal edit has been limited to substrates bearing electron-withdrawing substituents on nitrogen. Moreover, the mechanism and wavelength-dependent efficiency of this transformation have remained unclear. In this work, we increased the electron richness of nitrogen in saturated azacycles to improve light absorption and strengthen critical intramolecular hydrogen bonding while enabling the direct installation of the photoreactive handle. As a result, a broadly expanded substrate scope, including underexplored electron-rich substrates and previously unsuccessful heterocycles, has now been achieved. The significantly improved yields and diastereoselectivities have facilitated reaction rate, kinetic isotope effect (KIE), and quenching studies, in addition to the determination of quantum yields. Guided by these studies, we propose a revised ET/PT mechanism for the ring contraction, which is additionally corroborated by computational characterization of the lowest-energy excited states of α-acylated substrates through time-dependent DFT. The efficiency of the ring contraction at wavelengths longer than those strongly absorbed by the substrates was investigated through wavelength-dependent rate measurements, which revealed a red shift of the photochemical action plot relative to substrate absorbance. The elucidated mechanistic and photophysical details effectively rationalize empirical observations, including additive effects, that were previously poorly understood. Our findings not only demonstrate enhanced synthetic utility of the photomediated ring contraction and shed light on mechanistic details but may also offer valuable guidance for understanding wavelength-dependent reactivity for related photochemical systems.

2.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416040

RESUMEN

Solid-state high harmonic generation (sHHG) spectroscopy is a promising technique for studying electronic structure, symmetry, and dynamics in condensed matter systems. Here, we report on the implementation of an advanced sHHG spectrometer based on a vacuum chamber and closed-cycle helium cryostat. Using an in situ temperature probe, it is demonstrated that the sample interaction region retains cryogenic temperature during the application of high-intensity femtosecond laser pulses that generate high harmonics. The presented implementation opens the door for temperature-dependent sHHG measurements down to a few Kelvin, which makes sHHG spectroscopy a new tool for studying phases of matter that emerge at low temperatures, which is particularly interesting for highly correlated materials.

3.
Phys Rev Lett ; 129(14): 147401, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36240395

RESUMEN

High-harmonic generation (HHG) in solids has been touted as a way to probe ultrafast dynamics and crystal symmetries in condensed matter systems. Here, we investigate the polarization properties of high-order harmonics generated in monolayer MoS_{2}, as a function of crystal orientation relative to the mid-infrared laser field polarization. At several different laser wavelengths we experimentally observe a prominent angular shift of the parallel-polarized odd harmonics for energies above approximately 3.5 eV, and our calculations indicate that this shift originates in subtle differences in the recombination dipole strengths involving multiple conduction bands. This observation is material specific and is in addition to the angular dependence imposed by the dynamical symmetry properties of the crystal interacting with the laser field, and may pave the way for probing the vectorial character of multiband recombination dipoles.

4.
J Chem Phys ; 153(3): 030901, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32716161

RESUMEN

Femtosecond stimulated Raman spectroscopy (FSRS) is a chemically specific vibrational technique that has the ability to follow structural dynamics during photoinduced processes such as charge transfer on the ultrafast timescale. FSRS has a strong background in following structural dynamics and elucidating chemical mechanisms; however, its use with solid-state materials has been limited. As photovoltaic and electronic devices rely on solid-state materials, having the ability to track the evolving dynamics during their charge transfer and transport processes is crucial. Following the structural dynamics in these solid-state materials will lead to the identification of specific chemical structures responsible for various photoinduced charge transfer reactions, leading to a greater understanding of the structure-function relationships needed to improve upon current technologies. Isolating the specific nuclear motions and molecular structures that drive a desired physical process will provide a chemical blueprint, leading to the rational design and fabrication of efficient electronic and photovoltaic devices. In this perspective, we discuss technical challenges and experimental developments that have facilitated the use of FSRS with solid-state samples, explore previous studies that have identified structure-function relationships in charge transfer reactions, and analyze the future developments that will broaden and advance the field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...