Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(25): 37465-37479, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38776024

RESUMEN

In the global context of environmental awareness, the present research proposes a sustainable alternative to the widely used petroleum-based epoxy coatings. Epoxidized corn oil (ECO) was tested as potential matrix for advanced nanocomposite coating materials reinforced with 0.25 to 1 wt.% single-walled carbon nanotubes (SW) with carboxyl and amide functionalities. The elemental composition of the epoxy networks was monitored by XPS, showing the increase of O/C ratio to 0.387 when carboxyl-functionalized SW are added. To achieve sustainable composite materials, citric acid was used as curing agent, as a substitute for conventional counterparts. The influence of both surface functional groups and concentration of SW was evaluated through structural and thermo-mechanical analysis. The progressive increase of the DSC enthalpy for SW formulated systems indicates a possible pattern for specific interactions within the bio-based epoxy translated by adjusted activation energy. For 1% neat SW addition, the Ea values decreased to 46 kJ/mol in comparison with 53 kJ/mol calculated for neat epoxy. Furthermore, the -COOH groups from SW nanostructures exerted a strong influence over the mechanical performance of bio-epoxy networks, improving the crosslinking density with ~ 60% and twofold the storage modulus value. Accordingly, by gradual addition of SW-COOH filler within the ECO-based formulations, a very consistent behaviour in seawater was noted, with a 28% decreased value for the absorption degree.


Asunto(s)
Aceite de Maíz , Nanotubos de Carbono , Nanotubos de Carbono/química , Aceite de Maíz/química , Compuestos Epoxi/química , Nanocompuestos/química
2.
ACS Omega ; 9(7): 8297-8307, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405461

RESUMEN

Epoxy nanocomposites derived from linseed oil, reinforced with graphene oxide (GO) and montmorillonite (MMT) nanostructures, were synthesized. The nanohybrids were developed by enriching the structure of MMT and GO with primary amines through a common and simplified method, which implies physical interactions promoted by ultrasonic processing energy. The influence of the new nanoreinforcing agents along with neat ones on the overall properties of the biobased epoxy materials for coating applications was assessed. Interface formation through surface compatibility was contained by the lower values of activation energy calculated from differential scanning calorimetry (DSC) curves, along with a consistent 70% increase in the cross-linking density when amine-modified MMT was used. Thermomechanical characteristics of the biobased epoxy nanocomposites were explained through the interaction of the functional groups over the curing process of epoxidized linseed oil (ELO), giving a 15 °C higher Tg value increase. Furthermore, the low surface energy values suggested an intrinsic antibacterial activity, as proved by a significant decrease of CFU against Staphylococcus aureus bacterial strains on the 0.25% reinforced coatings.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887926

RESUMEN

This study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support. To obtain the decontaminating formulations, sodium alginate (ALG) was further incorporated into the colloidal solutions containing the antimicrobial nanoparticles. The properties of the initial CNF-ox-NP-ALG solutions and the resulting peelable nanocomposite hydrogels (obtained by crosslinking with zinc acetate) were assessed by rheological measurements, and mechanical investigations, respectively. The evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for the synthesized nanoparticles (silver, copper, and zinc oxide) was performed. The best values for MIC and MBC were obtained for CNF-ox decorated with AgNPs for both types of bacterial strains: Gram-negative (MIC and MBC values (mg/L): E. coli-3 and 108; P. aeruginosa-3 and 54) and Gram-positive (MIC and MBC values (mg/L): S. aureus-13 and 27). The film-forming decontaminating formulations were also subjected to a microbiology assay consisting of the time-kill test, MIC and MBC estimations, and evaluation of the efficacity of peelable coatings in removing the biological agents from the contaminated surfaces. The best decontamination efficiencies against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa varied between 97.40% and 99.95% when employing silver-decorated CNF-ox in the decontaminating formulations. These results reveal an enhanced antimicrobial activity brought about by the synergistic effect of silver and CNF-ox, coupled with an efficient incorporation of the contaminants inside the peelable films.

4.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37631504

RESUMEN

Due to environmental concerns, as well as its exceptional physical and mechanical capabilities, biodegradability, and optical and barrier qualities, nanocellulose has drawn a lot of interest as a source of reinforcing materials that are nanometer sized. This article focuses on how to manufacture cellulose nanomaterials from cotton by using different types of acids such as H2SO4 and HCI in different concentrations and in the presence of enzymes such as cellulase and xylanase. Two different types of bleaching methods were used before acid and enzyme hydrolysis. In the first method, cellulose was extracted by bleaching the cotton with H2O2. In the second method, NaOCl was utilized. For both methods, different concentrations of acids and enzymes were used to isolate nanocellulose materials, cellulose nanocrystals (CNC), and cellulose nanofibrils (CNF) at different temperatures. All obtained nanocellulose materials were analyzed through different techniques such as FT-IR, Zeta potentials, DLS, Raman spectroscopy, TGA, DSC, XRD, and SEM. The characteristic signals related to cellulose nanocrystals (CNC) were confirmed with the aid of Raman and FT-IR spectroscopy. According to the XRD results, the samples' crystallinity percentages range from 54.1% to 63.2%. The SEM image showed that long fibers break down into small fibers and needle-like features are seen on the surface of the fibers. Using different types of bleaching has no significant effect on the thermal stability of samples. The results demonstrate a successful method for synthesizing cellulose nanofibrils (CNF) from cotton through enzymatic hydrolysis, but the results also demonstrated that the choice of bleaching method has a significant impact on the hydrodynamic properties and crystallinity of both CNC and CNF samples.

5.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679319

RESUMEN

Bio-based composites were developed from the epoxy derivatives of Lallemantia iberica oil and kraft lignin (ELALO and EpLnK), using UV radiation as a low energy consumption tool for the oxiranes reaction. To avoid the filler sedimentation or its inhomogeneous distribution in the oil matrix, different structure-directing agents (SDA) were employed: 1,3:2,4-dibenzylidene-D-sorbitol (DBS), 12-hydroxystearic acid (HSA) and sorbitan monostearate (Span 60). The SDA and EpLnK effect upon the ELALO-based formulations, their curing reaction and the performance of the resulting materials were investigated. Fourier-transform Infrared Spectrometry (FTIR) indicates different modes of molecular arrangement through H bonds for the initial ELALO-SDA or ELALO-SDA-EpLnK systems, also confirming the epoxy group's reaction through the cationic mechanism for the final composites. Gel fraction measurements validate the significant conversion of the epoxides for those materials containing SDAs or 1% EpLnK; an increased EpLnK amount (5%), with or without SDA addition, conduced to an inefficient polymerization process, with the UV radiation being partially absorbed by the filler. Thermo-gravimetric and dynamic-mechanical analyses (TGA and DMA) revealed good properties for the ELALO-based materials. By loading 1% EpLnK, the thermal stability was improved to with 10 °C (for Td3%) and the addition of each SDA differently influenced the Tg values but also gave differences in the glassy and rubbery states when the storage moduli were interrogated, depending on their chemical structures. Water affinity and morphological studies were also carried out.

6.
Polymers (Basel) ; 14(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36236160

RESUMEN

Considering its great industrial potential, epoxidized linseed oil (ELO) was crosslinked with different agents, both natural and synthetic: citric acid (CA, in the presence of water-W, or tetrahydrofuran-THF, as activator molecules) and Jeffamine D230, respectively, resulting bio-based polymeric matrices, studied further, comparatively, in terms of their properties, through different methods. Thermal curing parameters were established by means of Differential Scanning Calorimetry (DSC). Fourier transform Infrared Spectroscopy (FTIR) and DSC were used to identify the reactivity of each ELO-based formulation, discussing the influence of the employed curing systems under the conversion of the epoxy rings. Then, the obtained bio-based materials were characterized by different methods, establishing the structure-properties relation. Thermogravimetric analysis revealed higher thermal stability for the ELO_CA material when THF was used as an activator. Moreover, a higher glass transition temperature (Tg) with ~12 °C was registered for this material when compared with the one that resulted through the crosslinking of ELO with D230 conventional amine. Other important features, such as crosslink density, storage modulus, mechanical features, and water affinity, were discussed. Under the loop of a comprehensive approach, a set of remarkable properties were obtained for ELO_CA_THF material when compared with the one resulting from the crosslinking of ELO with the synthetic Jeffamine.

7.
Polymers (Basel) ; 14(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35746083

RESUMEN

This study presents the functionalization and characterization of graphene and electromagnetic interference (EMI) attenuation capacity in epoxy-nanocomposites. The modification of graphene involved both small molecules and polymers for compatibilization with epoxy resin components to provide EMI shielding. The TGA and RAMAN analyses confirmed the synthesis of graphene with a different layer thickness of the graphene sheets. Graphene samples with different layer thicknesses (monolayer, few layers, and multilayer) were selected and further employed for epoxy coating formulation. The obtained nanocomposites were characterized in terms of EMI shielding effectiveness, SEM, micro-CT, magnetic properties, and stress-strain resistance. The EMI shielding effectiveness results indicated that the unmodified graphene and hexamethylene diamine (HMDA) modified graphene displayed the best EMI shielding properties at 11 GHz. However, the epoxy nanocomposites based on HMDA modified graphene displayed better flexibility with an identical EMI shielding effectiveness compared to the unmodified graphene despite the formation of aggregates. The improved flexibility of the epoxy nanocomposites and EMI shielding characteristics of HMDA functionalized graphene offers a practical solution for textile coatings with microwave absorbing (MA) capacity.

8.
Int J Mol Sci ; 23(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35628150

RESUMEN

We designed graphene oxide composites with increased morphological and structural variability using fatty acid-coupled polysaccharide co-polymer as the continuous phase. The matrix was synthesized by N, O-acylation of chitosan with palmitic and lauric acid. The obtained co-polymer was crosslinked with genipin and composited with graphene oxide. FTIR spectra highlighted the modification and multi-components interaction. DLS, SEM, and contact angle tests demonstrated that the conjugation of hydrophobic molecules to chitosan increased surface roughness and hydrophilicity, since it triggered a core-shell macromolecular structuration. Nanoindentation revealed a notable durotaxis gradient due to chitosan/fatty acid self-organization and graphene sheet embedment. The composited building blocks with graphene oxide were more stable during in vitro enzymatic degradation tests and swelled less. In vitro viability, cytotoxicity, and inflammatory response tests yielded promising results, and the protein adsorption test demonstrated potential antifouling efficacy. The robust and stable substrates with heterogeneous architecture we developed show promise in biomedical applications.


Asunto(s)
Quitosano , Anisotropía , Quitosano/química , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros , Ingeniería de Tejidos
9.
Polymers (Basel) ; 14(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35267854

RESUMEN

The field of tissue engineering is constantly evolving as it aims to develop bioengineered and functional tissues and organs for repair or replacement. Due to their large surface area and ability to interact with proteins and peptides, graphene oxides offer valuable physiochemical and biological features for biomedical applications and have been successfully employed for optimizing scaffold architectures for a wide range of organs, from the skin to cardiac tissue. This review critically focuses on opportunities to employ protein-graphene oxide structures either as nanocomposites or as biocomplexes and highlights the effects of carbonaceous nanostructures on protein conformation and structural stability for applications in tissue engineering and regenerative medicine. Herein, recent applications and the biological activity of nanocomposite bioconjugates are analyzed with respect to cell viability and proliferation, along with the ability of these constructs to sustain the formation of new and functional tissue. Novel strategies and approaches based on stem cell therapy, as well as the involvement of the extracellular matrix in the design of smart nanoplatforms, are discussed.

10.
Polymers (Basel) ; 13(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34771350

RESUMEN

Epoxidized linseed oil (ELO) and kraft lignin (LnK) were used to obtain new sustainable composites as corrosion protection layers through a double-curing procedure involving UV radiation and thermal curing to ensure homogeneous distribution of the filler. The crosslinked structures were confirmed by Fourier-transform infrared spectrometry (FTIR), by comparative monitorization of the absorption band at 825 cm-1, attributed to the stretching vibration of epoxy rings. Thermal degradation behavior under N2 gas indicates that the higher LnK content, the better thermal stability of the composites (over 30 °C of Td10% for ELO + 15% LnK), while for the experiment under air-oxidant atmosphere, the lower LnK content (5%) conducted to the more thermo-stable material. Dynamic-mechanic behavior and water affinity of the new materials were also investigated. The increase of the Tg values with the increase of the LnK content (20 °C for the composite with 15% LnK) denote the reinforcement effect of the LnK, while the surface and bulk water affinity were not dramatically affected. All the obtained composites were tested as carbon steel corrosion protection coatings, resulting in significant increase of corrosion inhibition efficiency (IE) of 140-380%, highlighting the great potential of the bio-based ELO-LnK composites as a future perspective for industrial application.

11.
Polymers (Basel) ; 14(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35012088

RESUMEN

Nanostructures are more and more evolved through extensive research on their functionalities; thus, the aim of this study was to obtain layered clay-graphene oxide nanohybrids with application as reinforcing agents in polyurea nanocomposites with enhanced thermal-mechanical and fire-retardant properties. Montmorillonite (MMT) was combined with graphene oxide (GO) and amine functionalized graphene oxide (GOD) through a new cation exchange method; the complex nanostructures were analyzed through FTIR and XPS to assess ionic interactions between clay layers and GO sheets by C1s deconvolution and specific C sp3, respective/ly, C-O secondary peaks appearance. The thermal decomposition of nanohybrids showed a great influence of MMT layers in TGA, while the XRD patterns highlighted mutual MMT and GO sheets crystalline-structure disruption by the d (002) shift 2θ = 6.29° to lower values. Furthermore, the nanohybrids were embedded in the polyurea matrix, and the thermo-mechanical analysis gave information about the stiffness of MMT-GO nanocomposites, while GOD insertion within the MMT layers resulted in a 30 °C improvement in the Tg of hard domains, as shown in the DSC study. The micro CT analysis show good dispersion of inorganic structures within the polyurea, while the SEM fracture images revealed smooth surfaces. Cone calorimetry was used to evaluate fire-retardant properties through limiting the oxygen index, and MMT-GOD based nanocomposites showed a 35.4% value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA