Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Diabetes Complications ; 34(9): 107614, 2020 09.
Article En | MEDLINE | ID: mdl-32571684

AIMS: We hypothesized that adults with type 1 diabetes and severe polyneuropathy have alterations in neuronal transmission at different anatomical levels. The aims were to investigate upstream sensory neuronal activation in terms of peripheral, spinal, precortical, and cortical transmission. METHODS: 48 participants with type-1 diabetes and polyneuropathy, and 21 age-matched healthy participants were included. Electrophysiological median nerve recordings were used to analyze peripheral transmission at Erb's point (P9-N11); spinal evoked potentials at Cv7 (P11-N14); subcortical evoked potentials at Oz (N14-P18); early cortical evoked potentials at CP5 (N20-P22); late cortical evoked potentials at C1 (N60-P80) and estimated cortical inter-peak latencies as measures of central conduction time. RESULTS: In comparison to healthy, the presence of diabetes prolonged peripheral transmission at P9 and N11 (+0.49 ms, p = .000; +0.47 ms, p = .04, respectively), early cortical evoked potentials at CP5: N20 (+2.41 ms, p = .003) and P22 (+5.88 ms, p = .001) and cortical potentials at C1: N60 (+39.08 ms, p = .001) and P80 (+54.55 ms, p = .000) and central conduction time. Decreased amplitudes were shown peripherally (-2.13 µV, p = .000), spinally (-0.57 µV, p = .005) and pre-cortically (-0.22 µV, p = .004). In both healthy and people with diabetes increased central conduction time were associated with decreased parasympathetic tone (ρ = -0.52, p = .027; ρ = -0.35, p = .047, respectively). CONCLUSION: Neuronal afferent transmission and brain responses were significantly impaired in diabetes and the presence of prolonged central conduction time is indicative of severe extensive neuronal damage. Trial registry number: EUDRA CT: 2013-004375-12; clinicaltrials.gov: NCT02138045.


Diabetes Mellitus, Type 1 , Neural Conduction , Polyneuropathies , Reaction Time , Adult , Case-Control Studies , Diabetes Mellitus, Type 1/complications , Evoked Potentials, Somatosensory , Humans , Median Nerve , Polyneuropathies/complications , Spinal Cord
2.
PLoS One ; 14(12): e0225535, 2019.
Article En | MEDLINE | ID: mdl-31800618

Despite being widely studied, the underlying mechanisms of transcranial magnetic brain stimulation (TMS) induced motor evoked potential (MEP), early cortical silent period (CSP) and rebound activity are not fully understood. Our aim is to better characterize these phenomena by combining various analysis tools on firing motor units. Responses of 29 tibialis anterior (TA) and 8 abductor pollicis brevis (APB) motor units to TMS pulses were studied using discharge rate and probability-based tools to illustrate the profile of the synaptic potentials as they develop on motoneurons in 24 healthy volunteers. According to probability-based methods, TMS pulse produces a short-latency MEP which is immediately followed by CSP that terminates at rebound activity. Discharge rate analysis, however, revealed not three, but just two events with distinct time courses; a long-lasting excitatory period (71.2 ± 9.0 ms for TA and 42.1 ± 11.2 ms for APB) and a long-latency inhibitory period with duration of 57.9 ± 9.5 ms for TA and 67.3 ± 13.8 ms for APB. We propose that part of the CSP may relate to the falling phase of net excitatory postsynaptic potential induced by TMS. Rebound activity, on the other hand, may represent tendon organ inhibition induced by MEP activated soleus contraction and/or long-latency intracortical inhibition. Due to generation of field potentials when high intensity TMS is used, this study is limited to investigate the events evoked by low intensity TMS only and does not provide information about later parts of much longer CSPs induced by high intensity TMS. Adding discharge rate analysis contributes to obtain a more accurate picture about the characteristics of TMS-induced events. These results have implications for interpreting motor responses following TMS for diagnosis and overseeing recovery from various neurological conditions.


Motor Cortex/physiology , Transcranial Magnetic Stimulation , Action Potentials/physiology , Electromyography , Excitatory Postsynaptic Potentials/physiology , Female , Humans , Male , Motor Neurons/physiology , Muscle, Skeletal/physiology , Synaptic Potentials/physiology
3.
Brain Sci ; 9(6)2019 Jun 01.
Article En | MEDLINE | ID: mdl-31159454

: Brain-computer interfaces (BCIs), operated in a cue-based (offline) or self-paced (online) mode, can be used for inducing cortical plasticity for stroke rehabilitation by the pairing of movement-related brain activity with peripheral electrical stimulation. The aim of this study was to compare the difference in cortical plasticity induced by the two BCI modes. Fifteen healthy participants participated in two experimental sessions: cue-based BCI and self-paced BCI. In both sessions, imagined dorsiflexions were extracted from continuous electroencephalogram (EEG) and paired 50 times with the electrical stimulation of the common peroneal nerve. Before, immediately after, and 30 minutes after each intervention, the cortical excitability was measured through the motor-evoked potentials (MEPs) of tibialis anterior elicited through transcranial magnetic stimulation. Linear mixed regression models showed that the MEP amplitudes increased significantly (p < 0.05) from pre- to post- and 30-minutes post-intervention in terms of both the absolute and relative units, regardless of the intervention type. Compared to pre-interventions, the absolute MEP size increased by 79% in post- and 68% in 30-minutes post-intervention in the self-paced mode (with a true positive rate of ~75%), and by 37% in post- and 55% in 30-minutes post-intervention in the cue-based mode. The two modes were significantly different (p = 0.03) at post-intervention (relative units) but were similar at both post timepoints (absolute units). These findings suggest that immediate changes in cortical excitability may have implications for stroke rehabilitation, where it could be used as a priming protocol in conjunction with another intervention; however, the findings need to be validated in studies involving stroke patients.

4.
Brain Sci ; 9(6)2019 Jun 12.
Article En | MEDLINE | ID: mdl-31212803

To investigate the effects of a single session of spinal manipulation (SM) on voluntary activation of the elbow flexors in participants with subclinical neck pain using an interpolated twitch technique with transcranial magnetic stimulation (TMS), eighteen volunteers with subclinical neck pain participated in this randomized crossover trial. TMS was delivered during elbow flexion contractions at 50%, 75% and 100% of maximum voluntary contraction (MVC) before and after SM or control intervention. The amplitude of the superimposed twitches evoked during voluntary contractions was recorded and voluntary activation was calculated using a regression analysis. Dependent variables were analyzed with two-way (intervention × time) repeated measures ANOVAs. Significant intervention effects for SM compared to passive movement control were observed for elbow flexion MVC (p = 0.04), the amplitude of superimposed twitch (p = 0.04), and voluntary activation of elbow flexors (p =0.03). Significant within-group post-intervention changes were observed for the superimposed twitch (mean group decrease of 20.9%, p < 0.01) and voluntary activation (mean group increase of 3.0%, p < 0.01) following SM. No other significant within-group changes were observed. Voluntary activation of the elbow flexors increased immediately after one session of spinal manipulation in participants with subclinical neck pain. A decrease in the amplitude of superimposed twitch during elbow flexion MVC following spinal manipulation suggests a facilitation of motor cortical output.

5.
Sci Rep ; 9(1): 2673, 2019 02 25.
Article En | MEDLINE | ID: mdl-30804399

The objective of this study was to investigate whether a single session of chiropractic care could increase strength in weak plantar flexor muscles in chronic stroke patients. Maximum voluntary contractions (strength) of the plantar flexors, soleus evoked V-waves (cortical drive), and H-reflexes were recorded in 12 chronic stroke patients, with plantar flexor muscle weakness, using a randomized controlled crossover design. Outcomes were assessed pre and post a chiropractic care intervention and a passive movement control. Repeated measures ANOVA was used to asses within and between group differences. Significance was set at p < 0.05. Following the chiropractic care intervention there was a significant increase in strength (F (1,11) = 14.49, p = 0.002; avg 64.2 ± 77.7%) and V-wave/Mmax ratio (F(1,11) = 9.67, p = 0.009; avg 54.0 ± 65.2%) compared to the control intervention. There was a significant strength decrease of 26.4 ± 15.5% (p = 0.001) after the control intervention. There were no other significant differences. Plantar flexor muscle strength increased in chronic stroke patients after a single session of chiropractic care. An increase in V-wave amplitude combined with no significant changes in H-reflex parameters suggests this increased strength is likely modulated at a supraspinal level. Further research is required to investigate the longer term and potential functional effects of chiropractic care in stroke recovery.


Manipulation, Chiropractic/methods , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle Weakness/physiopathology , Muscle, Skeletal/physiology , Stroke/therapy , Adult , Cross-Over Studies , Electromyography/instrumentation , Electromyography/methods , Female , H-Reflex/physiology , Humans , Male , Middle Aged , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Stroke/physiopathology
6.
Sensors (Basel) ; 18(11)2018 Nov 03.
Article En | MEDLINE | ID: mdl-30400325

Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination of afferent feedback modalities to increase cortical excitability in a BCI training intervention. In three experimental sessions, 12 healthy participants imagined a dorsiflexion that was decoded by a BCI which activated relevant afferent feedback: (1) electrical nerve stimulation (ES) (peroneal nerve-innervating tibialis anterior), (2) passive movement (PM) of the ankle joint, or (3) combined electrical stimulation and passive movement (Comb). The cortical excitability was assessed with transcranial magnetic stimulation determining motor evoked potentials (MEPs) in tibialis anterior before, immediately after and 30 min after the BCI training. Linear mixed regression models were used to assess the changes in MEPs. The three interventions led to a significant (p < 0.05) increase in MEP amplitudes immediately and 30 min after the training. The effect sizes of Comb paradigm were larger than ES and PM, although, these differences were not statistically significant (p > 0.05). These results indicate that the timing of movement imagery and afferent feedback is the main determinant of induced cortical plasticity whereas the specific type of feedback has a moderate impact. These findings can be important for the translation of such a BCI protocol to the clinical practice where by combining the BCI with the already available equipment cortical plasticity can be effectively induced. The findings in the current study need to be validated in stroke populations.


Brain-Computer Interfaces , Feedback , Neuronal Plasticity , Adult , Evoked Potentials, Motor , Female , Humans , Male , Models, Statistical , ROC Curve , Time Factors
7.
Brain Sci ; 8(5)2018 Apr 27.
Article En | MEDLINE | ID: mdl-29702550

Recent research has shown that chiropractic spinal manipulation can alter central sensorimotor integration and motor cortical drive to human voluntary muscles of the upper and lower limb. The aim of this paper was to explore whether spinal manipulation could also influence maximal bite force. Twenty-eight people were divided into two groups of 14, one that received chiropractic care and one that received sham chiropractic care. All subjects were naive to chiropractic. Maximum bite force was assessed pre- and post-intervention and at 1-week follow up. Bite force in the chiropractic group increased compared to the control group (p = 0.02) post-intervention and this between-group difference was also present at the 1-week follow-up (p < 0.01). Bite force in the chiropractic group increased significantly by 11.0% (±18.6%) post-intervention (p = 0.04) and remained increased by 13.0% (±12.9%, p = 0.04) at the 1 week follow up. Bite force did not change significantly in the control group immediately after the intervention (−2.3 ± 9.0%, p = 0.20), and decreased by 6.3% (±3.4%, p = 0.01) at the 1-week follow-up. These results indicate that chiropractic spinal manipulation can increase maximal bite force.

8.
Eur J Appl Physiol ; 118(4): 737-749, 2018 Apr.
Article En | MEDLINE | ID: mdl-29327170

PURPOSE: The primary purpose of this study was to investigate whether a single session of spinal manipulation (SM) increases strength and cortical drive in the lower limb (soleus muscle) of elite Taekwondo athletes. METHODS: Soleus-evoked V-waves, H-reflex and maximum voluntary contraction (MVC) of the plantar flexors were recorded from 11 elite Taekwondo athletes using a randomized controlled crossover design. Interventions were either SM or passive movement control. Outcomes were assessed at pre-intervention and at three post-intervention time periods (immediate post, post 30 min and post 60 min). A multifactorial repeated measures ANOVA was conducted to assess within and between group differences. Time and session were used as factors. A post hoc analysis was carried out, when an interactive effect was present. Significance was set at p ≤ 0.05. RESULTS: SM increased MVC force [F(3,30) = 5.95, p < 0.01], and V-waves [F(3,30) = 4.25, p = 0.01] over time compared to the control intervention. Between group differences were significant for all time periods (p < 0.05) except for the post60 force measurements (p = 0.07). CONCLUSION: A single session of SM increased muscle strength and corticospinal excitability to ankle plantar flexor muscles in elite Taekwondo athletes. The increased MVC force lasted for 30 min and the corticospinal excitability increase persisted for at least 60 min.


Athletes , Manipulation, Spinal , Muscle Strength/physiology , Muscle, Skeletal/surgery , Adolescent , Adult , Evoked Potentials, Motor/physiology , Female , Humans , Male , Manipulation, Spinal/methods , Middle Aged , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Young Adult
9.
Exp Brain Res ; 236(3): 829-835, 2018 03.
Article En | MEDLINE | ID: mdl-29349480

The effect of body posture on the human soleus H-reflex via electrical stimulation of the tibial nerve at the popliteal fossa was studied. All parameters that may influence the reflex were controlled stringently. H-reflexes were elicited in three different body postures while keeping the level of background muscle activation to a minimum. The H-reflex curve relative to the M-wave curve did not change significantly in any of the body postures. However, the maximal H-reflex amplitude significantly increased in the prone position compared with the sitting (p = 0.02) and standing positions (p = 0.01). The background level of electrical activity of the soleus muscle did not significantly change during varying body postures. Together, these findings indicate that the effectiveness of the spindle primary afferent synapse on the soleus motor neuron pool changes significantly in prone position as compared to sitting and standing positions. Given that we have controlled the confounding factors excluding the head position relative to the gravity and the receptors that may be differentially activated at varying body postures such as the proprioceptors, it is concluded that the tonic activity from these receptors may presynaptically interfere with the effectiveness of the spindle primary afferent synapses on the soleus motor neurons.


H-Reflex/physiology , Motor Neurons/physiology , Muscle Spindles/physiology , Muscle, Skeletal/physiology , Posture/physiology , Adult , Afferent Pathways/physiology , Electric Stimulation , Electromyography , Humans , Male , Young Adult
...