Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 212: 106355, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37598731

RESUMEN

Pichia pastoris, a methylotrophic yeast used for recombinant protein expression, has the capability of performing many eukaryotic post-translational modifications, growing to high cell densities, and producing proteins in a cost-effective manner. However, P. pastoris's secretion properties are not always efficient, and its secretory pathway mechanisms have not been thoroughly elucidated. A previously identified mutant strain, bgs13, was found to efficiently secrete most recombinant proteins tested, raising the possibility that this bgs13 mutant is a universal super secreter. In this study, we used a reporter protein, ß-lactoglobulin (b-LG), to perform structural analysis of the protein secreted from wild type and mutant bgs13 strains to investigate the secretory mechanism. Primary, secondary, and tertiary structures of b-LG were examined using Edman sequencing, circular dichroism, tryptophan fluorescence, and temperature induced aggregation analysis. Our results demonstrate that the bgs13 produced more b-LG than the wt strain and that this protein was functionally folded similar to the wt. Surprisingly, we also found that the bgs13 b-LG was more resistant to aggregation, providing another example of the superior qualities of this strain for enhanced secreted protein production.


Asunto(s)
Saccharomycetales , Transporte Biológico , Lactoglobulinas/genética , Mutación
2.
J Proteome Res ; 22(7): 2421-2435, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37294931

RESUMEN

S-Palmitoylation is the covalent attachment of C14:0-C22:0 fatty acids (mainly C16:0 palmitate) to cysteines via thioester bonds. This lipid modification is highly abundant in neurons, where it plays a role in neuronal development and is implicated in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The knowledge of S-palmitoylation in neurodevelopment is limited due to technological challenges in analyzing this highly hydrophobic protein modification. Here, we used two orthogonal methods, acyl-biotin exchange (ABE) and lipid metabolic labeling (LML), to identify S-palmitoylated proteins and sites during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. We identified 2002 putative S-palmitoylated proteins in total, of which 650 were found with both methods. Significant changes in the abundance of S-palmitoylated proteins were detected, in particular for several processes and protein classes that are known to be important for neuronal differentiation, which include proto-oncogene tyrosine-protein kinase receptor (RET) signal transduction, SNARE protein-mediated exocytosis, and neural cell adhesion molecules. Overall, S-palmitoylation profiling by employing ABE and LML in parallel during RA-induced differentiation of SH-SY5Y cells revealed a subset of high confidence bona fide S-palmitoylated proteins and suggested an important role for S-palmitoylation in neuronal differentiation.


Asunto(s)
Neuroblastoma , Tretinoina , Humanos , Tretinoina/farmacología , Lipoilación , Diferenciación Celular , Proteínas , Lípidos , Línea Celular Tumoral
3.
EMBO J ; 41(3): e108823, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942047

RESUMEN

Polyubiquitination by E2 and E3 enzymes is crucial to cell cycle control, epigenetic regulation, and development. The hallmark of the E2 family is the ubiquitin (Ub)-conjugating (UBC) domain that forms a dynamic thioester conjugate with ubiquitin (E2~Ub). Numerous studies have focused on E2 surfaces, such as the N-terminal and crossover helices, that directly interact with an E3 or the conjugated ubiquitin to stabilize the active, "closed" state of the E2~Ub. However, it remains unclear how other E2 surfaces regulate ubiquitin transfer. Here, we demonstrate the helix-turn-helix (HTH) motif of the UBC tunes the intrinsic polyubiquitination activity through distinct functions in different E2s. Interestingly, the E2HTH motif is repurposed in UBE2S and UBE2R2 to interact with the conjugated or acceptor ubiquitin, respectively, modulating ubiquitin transfer. Furthermore, we propose that Anaphase-Promoting Complex/Cyclosome binding to the UBE2SHTH reduces the conformational space of the flexible E2~Ub, demonstrating an atypical E3-dependent activation mechanism. Altogether, we postulate the E2HTH motif evolved to provide new functionalities that can be harnessed by E3s and permits additional regulation to facilitate specific E2-E3-mediated polyubiquitination.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/química , Secuencias de Aminoácidos , Dominio Catalítico , Humanos , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...