Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Stem Cell Reports ; 19(9): 1289-1303, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39178848

RESUMEN

Directed differentiation of pluripotent stem cells into specialized cell types represents an invaluable tool for a wide range of applications. Here, we have exploited single-cell transcriptomic data to develop a stepwise in vitro differentiation system from mouse embryonic stem cells into adrenocortical cells. We show that during development, the adrenal primordium is embedded in an extracellular matrix containing tenascin and fibronectin. Culturing cells on fibronectin during differentiation increased the expression of the steroidogenic marker NR5A1. Furthermore, 3D cultures in the presence of protein kinase A (PKA)-pathway activators led to the formation of aggregates composed of different cell types expressing adrenal progenitor or steroidogenic markers, including the adrenocortical-specific enzyme CYP21A1. Importantly, in-vitro-differentiated cells responded to adrenocorticotropic hormone (ACTH) and angiotensin II with the production of glucocorticoids and mineralocorticoids, respectively, thus confirming the specificity of differentiation toward the adrenal lineage.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes , Animales , Ratones , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Corteza Suprarrenal/citología , Corteza Suprarrenal/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Hormona Adrenocorticotrópica/farmacología , Factor Esteroidogénico 1/metabolismo , Factor Esteroidogénico 1/genética , Corticoesteroides/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Angiotensina II/farmacología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibronectinas/metabolismo
2.
Elife ; 122024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441556

RESUMEN

From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.


Asunto(s)
Anomalías Múltiples , Infertilidad Masculina , Animales , Humanos , Masculino , Ratones , Centriolos , Infertilidad Masculina/genética , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Semen
3.
Andrology ; 12(1): 56-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37042163

RESUMEN

BACKGROUND: While cannabis is the most widely used recreational drug in the world, the effects of phytocannabinoids on semen parameters and reproductive hormones remain controversial. Cannabinoid receptors are activated by these compounds at each level of the hypothalamus-pituitary-gonadotropic axis. OBJECTIVES: To assess the impact of the consumption of Δ-9-tetrahydrocannabinol and cannabidiol on semen parameters, as well as on male reproductive hormone and endocannabinoid levels, in a cohort of young Swiss men. MATERIALS AND METHODS: The individuals in a Swiss cohort were divided according to their cannabis consumption. In the cannabis user group, we determined the delay between the last intake of cannabis and sample collection, the chronicity of use and the presence of cannabidiol in the consumed product. Urinary Δ-9-tetrahydrocannabinol metabolites were quantified via gas chromatography-mass spectrometry. Blood phytocannabinoids, endocannabinoids and male steroids were determined via liquid chromatography-mass spectrometry/mass spectrometry, and other hypothalamus-pituitary-gonadotropic axis hormones were determined via immunoassays. Semen parameters such as sperm concentration and motility were recorded using computer-assisted sperm analysis. RESULTS: Anandamide, N-palmitoyl ethanolamide, androgens, estradiol and sex hormone binding globulin levels were all higher in cannabis users, particularly in chronic, recent and cannabidiol-positive consumers. Gonadotropin levels were not significantly different in these user subpopulations, whereas prolactin and albumin concentrations were lower. In addition, cannabis users had a more basic semen pH and a higher percentage of spermatozoa with progressive motility. However, the two latter observations seem to be related to a shorter period of sexual abstinence in this group rather than to the use of cannabis. CONCLUSIONS: Because both cannabidiol and Δ-9-tetrahydrocannabinol are frequently used by men of reproductive age, it is highly relevant to elucidate the potential effects they may have on human reproductive health. This study demonstrates that the mode of cannabis consumption must be considered when evaluating the effect of cannabis on semen quality.


Asunto(s)
Cannabidiol , Cannabis , Humanos , Masculino , Análisis de Semen , Cannabidiol/farmacología , Dronabinol/farmacología , Suiza , Semillas , Prolactina
4.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078651

RESUMEN

To investigate the role of the nuclear receptor NR5A1 in the testis after sex determination, we analyzed mice lacking NR5A1 in Sertoli cells (SCs) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impaired the expression of genes characteristic of SC identity (e.g. Sox9 and Amh), caused SC death from E14.5 onwards through a Trp53-independent mechanism related to anoikis, and induced disorganization of the testis cords. Together, these effects caused germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SCs changed their molecular identity: some acquired a 'pre-granulosa-like' cell identity, whereas other reverted to a 'supporting progenitor-like' cell identity, most of them being 'intersex' because they expressed both testicular and ovarian genes. Fetal Leydig cells (LCs) did not display significant changes, indicating that SCs are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LCs were absent from postnatal testes. In addition, adult mutant males displayed persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which could be explained by the loss of AMH and testosterone synthesis due to SC failure.


Asunto(s)
Anoicis , Células de Sertoli , Animales , Masculino , Ratones , Anoicis/genética , Muerte Celular/genética , Células de Sertoli/metabolismo , Testículo/metabolismo
5.
Development ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063846

RESUMEN

To investigate the role of the nuclear receptor NR5A1 in testis after sex determination, we have analyzed mice lacking NR5A1 in Sertoli cells (SC) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impairs the expression of genes characteristic of the SC identity (e.g., Sox9, Amh), causes SC death from E14.5 through a Trp53-independent mechanism related to anoikis, and induces disorganization of the testis cords. Together, these effects cause germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SC change their molecular identity: some acquire a "pre-granulosa-like" identity, while other revert to a "supporting progenitor-like" cell identity, most of them being "intersex" because they express both testicular and ovarian genes. Fetal Leydig cells (LC) do not display significant changes, indicating that SC are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LC were absent from the postnatal testes. In addition, adult mutant males display persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which can be explained by the loss of AMH and testosterone synthesis due to SC failure.

6.
Fertil Steril ; 120(6): 1181-1192, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921737

RESUMEN

OBJECTIVES: To investigate the association between mobile phone exposure and semen parameters. DESIGN: A nationwide cross-sectional study. SETTING: Andrology laboratories in close proximity to 6 army recruitment centers. PATIENTS: In total, 2886 men from the general Swiss population, 18-22 years old, were recruited between 2005 and 2018 during military conscription. INTERVENTION: Participants delivered a semen sample and completed a questionnaire on health and lifestyle, including the number of hours they spent using their mobile phones and where they placed them when not in use. MAIN OUTCOME MEASURES: Using logistic and multiple linear regression models, adjusted odds ratios and ß coefficients were determined, respectively. The association between mobile phone exposure and semen parameters such as volume, sperm concentration, total sperm count (TSC), motility, and morphology was then evaluated. RESULTS: A total of 2759 men answered the question concerning their mobile phone use, and 2764 gave details on the position of their mobile phone when not in use. In the adjusted linear model, a higher frequency of mobile phone use (>20 times per day) was associated with a lower sperm concentration (adjusted ß: -0.152; 95% confidence interval: -0.316; 0.011) and a lower TSC (adjusted ß: -0.271; 95% confidence interval: -0.515; -0.027). In the adjusted logistic regression model, this translates to a 30% and 21% increased risk for sperm concentration and TSC to be below the World Health Organization reference values for fertile men, respectively. This inverse association was found to be more pronounced in the first study period (2005-2007) and gradually decreased with time (2008-2011 and 2012-2018). No consistent associations were observed between mobile phone use and sperm motility or sperm morphology. Keeping a mobile phone in the pants pocket was not found to be associated with lower semen parameters. CONCLUSION: This large population-based study suggests that higher mobile phone use is associated with lower sperm concentration and TSC. The observed time trend of decreasing association is in line with the transition to new technologies and the corresponding decrease in mobile phone output power. Prospective studies with improved exposure assessment are needed to confirm whether the observed associations are causal.


Asunto(s)
Uso del Teléfono Celular , Análisis de Semen , Masculino , Humanos , Adolescente , Adulto Joven , Adulto , Semen , Motilidad Espermática , Estudios Prospectivos , Autoinforme , Estudios Transversales , Espermatozoides , Recuento de Espermatozoides
7.
Science ; 382(6670): 600-606, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37917714

RESUMEN

Sex determination in mammals depends on the differentiation of the supporting lineage of the gonads into Sertoli or pregranulosa cells that govern testis and ovary development, respectively. Although the Y-linked testis-determining gene Sry has been identified, the ovarian-determining factor remains unknown. In this study, we identified -KTS, a major, alternatively spliced isoform of the Wilms tumor suppressor WT1, as a key determinant of female sex determination. Loss of -KTS variants blocked gonadal differentiation in mice, whereas increased expression, as found in Frasier syndrome, induced precocious differentiation of ovaries independently of their genetic sex. In XY embryos, this antagonized Sry expression, resulting in male-to-female sex reversal. Our results identify -KTS as an ovarian-determining factor and demonstrate that its time of activation is critical in gonadal sex differentiation.


Asunto(s)
Ovario , Procesos de Determinación del Sexo , Proteínas WT1 , Animales , Femenino , Masculino , Ratones , Ovario/crecimiento & desarrollo , Procesos de Determinación del Sexo/genética , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Testículo/crecimiento & desarrollo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Isoformas de Proteínas
8.
Front Cell Dev Biol ; 11: 1221578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547474

RESUMEN

The sperm-specific channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration ([Ca2+]i) and plays an essential role in sperm function. It is mainly activated by the steroid progesterone (P4) but is also promiscuously activated by a wide range of synthetic and physiological compounds. These compounds include diverse steroids whose action on the channel is so far still controversial. To investigate the effect of these compounds on CatSper and sperm function, we developed a high-throughput screening (HTS) assay to measure changes in [Ca2+]i in human sperm and screened 1,280 approved and off-patent drugs including 90 steroids from the Prestwick chemical library. More than half of the steroids tested (53%) induced an increase in [Ca2+]i and reduced the P4-induced Ca2+ influx in human sperm in a dose-dependent manner. Ten of the most potent steroids (activating and P4-inhibiting) were selected for a detailed analysis of their action on CatSper and their ability to act on sperm acrosome reaction (AR) and penetration in viscous media. We found that these steroids show an inhibitory effect on P4 but not on prostaglandin E1-induced CatSper activation, suggesting that they compete for the same binding site as P4. Pregnenolone, dydrogesterone, epiandrosterone, nandrolone, and dehydroepiandrosterone acetate (DHEA) were found to activate CatSper at physiologically relevant concentrations within the nanomolar range. Like P4, most tested steroids did not significantly affect the AR while stanozolol and estropipate slightly increased sperm penetration into viscous medium. Furthermore, using a hybrid approach integrating pharmacophore analysis and statistical modelling, we were able to screen in silico for steroids that can activate the channel and define the physicochemical and structural properties required for a steroid to exhibit agonist activity against CatSper. Overall, our results indicate that not only physiological but also synthetic steroids can modulate the activity of CatSper with varying potency and if bound to CatSper prior to P4, could impair the timely CatSper activation necessary for proper fertilization to occur.

9.
Metabolomics ; 19(6): 53, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37271779

RESUMEN

INTRODUCTION: A decrease in sperm cell count has been observed along the last several decades, especially in the most developed regions of the world. The use of metabolomics to study the composition of the seminal fluid is a promising approach to gain access to the molecular mechanisms underlying this fact. OBJECTIVES: In the present work, we aimed at relating metabolomic profiles of young healthy men to their semen quality parameters obtained from conventional microscopic analysis. METHODS: An untargeted metabolomics approach focusing on low- to mid-polarity compounds was used to analyze a subset of seminal fluid samples from a cohort of over 2700 young healthy men. RESULTS: Our results show that a broad metabolic profiling comprising several families of compounds (including acyl-carnitines, steroids, and other lipids) can contribute to effectively distinguish samples provided by individuals exhibiting low or high absolute sperm counts. CONCLUSION: A number of metabolites involved in sexual development and function, signaling, and energy metabolism were highlighted as being distinctive of samples coming from either group, proving untargeted metabolomics as a promising tool to better understand the pathophysiological processes responsible for male fertility impairment.


Asunto(s)
Análisis de Semen , Semen , Humanos , Masculino , Semen/metabolismo , Metabolómica/métodos , Espermatozoides/metabolismo , Recuento de Espermatozoides
10.
PLoS Genet ; 19(3): e1010656, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857387

RESUMEN

DND1 is essential to maintain germ cell identity. Loss of Dnd1 function results in germ cell differentiation to teratomas in some inbred strains of mice or to somatic fates in zebrafish. Using our knock-in mouse line in which a functional fusion protein between DND1 and GFP is expressed from the endogenous locus (Dnd1GFP), we distinguished two male germ cell (MGC) populations during late gestation cell cycle arrest (G0), consistent with recent reports of heterogeneity among MGCs. Most MGCs express lower levels of DND1-GFP (DND1-GFP-lo), but some MGCs express elevated levels of DND1-GFP (DND1-GFP-hi). A RNA-seq time course confirmed high Dnd1 transcript levels in DND1-GFP-hi cells along with 5-10-fold higher levels for multiple epigenetic regulators. Using antibodies against DND1-GFP for RNA immunoprecipitation (RIP)-sequencing, we identified multiple epigenetic and translational regulators that are binding targets of DND1 during G0 including DNA methyltransferases (Dnmts), histone deacetylases (Hdacs), Tudor domain proteins (Tdrds), actin dependent regulators (Smarcs), and a group of ribosomal and Golgi proteins. These data suggest that in DND1-GFP-hi cells, DND1 hosts coordinating mRNA regulons that consist of functionally related and localized groups of epigenetic enzymes and translational components.


Asunto(s)
Espermatogonias , Pez Cebra , Animales , Femenino , Masculino , Ratones , Embarazo , Cromatina/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Unión al ARN/genética , Espermatogonias/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
11.
Cell Rep ; 42(3): 112191, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36862551

RESUMEN

Adrenal cortex and gonads represent the two major steroidogenic organs in mammals. Both tissues are considered to share a common developmental origin characterized by the expression of Nr5a1/Sf1. The precise origin of adrenogonadal progenitors and the processes driving differentiation toward the adrenal or gonadal fate remain, however, elusive. Here, we provide a comprehensive single-cell transcriptomic atlas of early mouse adrenogonadal development including 52 cell types belonging to twelve major cell lineages. Trajectory reconstruction reveals that adrenogonadal cells emerge from the lateral plate rather than the intermediate mesoderm. Surprisingly, we find that gonadal and adrenal fates have already diverged prior to Nr5a1 expression. Finally, lineage separation into gonadal and adrenal fates involves canonical versus non-canonical Wnt signaling and differential expression of Hox patterning genes. Thus, our study provides important insights into the molecular programs of adrenal and gonadal fate choice and will be a valuable resource for further research into adrenogonadal ontogenesis.


Asunto(s)
Gónadas , Transcriptoma , Ratones , Animales , Transcriptoma/genética , Gónadas/metabolismo , Linaje de la Célula/genética , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Mamíferos
12.
Sex Dev ; 17(4-6): 181-189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38447543

RESUMEN

INTRODUCTION: 46,XY gonadal dysgenesis is a condition that is characterised by undeveloped testes in individuals with a male karyotype. Mutations in many genes that underlie this condition have been identified; however, there are still a considerable number of patients with an unknown genetic background. Recently, a mutation in the STARD8 X-linked gene in two sisters with 46,XY gonadal dysgenesis has been reported. It was localised within the START domain, whose homologue in Drosophila is responsible for maintaining testes integrity during their development. METHODS: We analysed the potential pathogenicity of another STARD8 mutation, p.R887C, that was identified in a patient with 46,XY asymmetric gonadal dysgenesis. For this purpose, molecular dynamics simulations were performed. RESULTS: These simulations revealed the full rearrangement of the helix containing the p.R887C substitution upstream from the START domain, which may cause STARD8 protein dysfunction and contribute to 46,XY gonadal dysgenesis. A comparison of the phenotypes of the three described 46,XY gonadal dysgenesis patients that harbour STARD8 mutations indicated that alterations of this gene can result in a partial or complete gonadal dysgenesis phenotype. CONCLUSION: Based on these and previous results, it is reasonable to include STARD8 in gene panels for 46,XY gonadal dysgenesis.

13.
Elife ; 112022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36326091

RESUMEN

The identification of genes affecting gonad development is essential to understand the mechanisms causing Variations/Differences in Sex Development (DSD). Recently, a DLC3 mutation was associated with male gonadal dysgenesis in 46,XY DSD patients. We have studied the requirement of Cv-c, the Drosophila ortholog of DLC3, in Drosophila gonad development, as well as the functional capacity of DLC3 human variants to rescue cv-c gonad defects. We show that Cv-c is required to maintain testis integrity during fly development. We find that Cv-c and human DLC3 can perform the same function in fly embryos, as flies carrying wild type but not patient DLC3 variations can rescue gonadal dysgenesis, suggesting functional conservation. We also demonstrate that the StART domain mediates Cv-c's function in the male gonad independently from the GAP domain's activity. This work demonstrates a role for DLC3/Cv-c in male gonadogenesis and highlights a novel StART domain mediated function required to organize the gonadal mesoderm and maintain its interaction with the germ cells during testis development.


Asunto(s)
Proteínas de Drosophila , Disgenesia Gonadal , Animales , Humanos , Masculino , Drosophila , Proteínas de Drosophila/genética , Células Germinativas , Proteínas Activadoras de GTPasa/genética , Diferenciación Sexual , Testículo
14.
Nat Commun ; 13(1): 4412, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906245

RESUMEN

Gonadal sexual fate in mammals is determined during embryonic development and must be actively maintained in adulthood. In the mouse ovary, oestrogen receptors and FOXL2 protect ovarian granulosa cells from transdifferentiation into Sertoli cells, their testicular counterpart. However, the mechanism underlying their protective effect is unknown. Here, we show that TRIM28 is required to prevent female-to-male sex reversal of the mouse ovary after birth. We found that upon loss of Trim28, ovarian granulosa cells transdifferentiate to Sertoli cells through an intermediate cell type, different from gonadal embryonic progenitors. TRIM28 is recruited on chromatin in the proximity of FOXL2 to maintain the ovarian pathway and to repress testicular-specific genes. The role of TRIM28 in ovarian maintenance depends on its E3-SUMO ligase activity that regulates the sex-specific SUMOylation profile of ovarian-specific genes. Our study identifies TRIM28 as a key factor in protecting the adult ovary from the testicular pathway.


Asunto(s)
Ovario , Sumoilación , Animales , Femenino , Masculino , Mamíferos/metabolismo , Ratones , Ovario/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo
15.
Cell Rep ; 39(11): 110935, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705036

RESUMEN

Leydig cells (LCs) are the major androgen-producing cells in the testis. They arise from steroidogenic progenitors (SPs), whose origins, maintenance, and differentiation dynamics remain largely unknown. Single-cell transcriptomics reveal that the mouse steroidogenic lineage is specified as early as embryonic day 12.5 (E12.5) and has a dual mesonephric and coelomic origin. SPs specifically express the Wnt5a gene and evolve rapidly. At E12.5 and E13.5, they give rise first to an intermediate population of pre-LCs, and finally to fetal LCs. At E16.5, SPs possess the characteristics of the dormant progenitors at the origin of adult LCs and are also transcriptionally closely related to peritubular myoid cells (PMCs). In agreement with our in silico analysis, in vivo lineage tracing indicates that Wnt5a-expressing cells are bona fide progenitors of PMCs as well as fetal and adult LCs, contributing to most of the LCs present in the fetal and adult testis.


Asunto(s)
Células Intersticiales del Testículo , Testículo , Andrógenos , Animales , Diferenciación Celular , Feto , Masculino , Ratones
16.
Sci Adv ; 8(21): eabm0972, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35613264

RESUMEN

Gonadal sex determination represents a unique model for studying cell fate decisions. However, a complete understanding of the different cell lineages forming the developing testis and ovary remains elusive. Here, we investigated the origin, specification, and subsequent sex-specific differentiation of a previously uncharacterized population of supporting-like cells (SLCs) in the developing mouse gonads. The SLC lineage is closely related to the coelomic epithelium and specified as early as E10.5, making it the first somatic lineage to be specified in the bipotential gonad. SLC progenitors are localized within the genital ridge at the interface with the mesonephros and initially coexpress Wnt4 and Sox9. SLCs become sexually dimorphic around E12.5, progressively acquire a more Sertoli- or pregranulosa-like identity and contribute to the formation of the rete testis and rete ovarii. Last, we found that WNT4 is a crucial regulator of the SLC lineage and is required for normal development of the rete testis.

17.
Elife ; 112022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35451961

RESUMEN

Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects - the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.


Asunto(s)
Anomalías Múltiples , Astenozoospermia , Infertilidad Masculina , Anomalías Múltiples/genética , Astenozoospermia/genética , Humanos , Infertilidad Masculina/genética , Masculino , Herencia Multifactorial , Mutación , Cola del Espermatozoide , Espermatozoides
18.
Nat Commun ; 13(1): 1544, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318328

RESUMEN

Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease.


Asunto(s)
Tumor Rabdoide , Animales , Células Germinativas/patología , Humanos , Ratones , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Proteína SMARCB1/genética , Análisis de la Célula Individual , Transcriptoma
19.
Cell Death Dis ; 13(1): 75, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075134

RESUMEN

Gonadogenesis is the process wherein two morphologically distinct organs, the testis and the ovary, arise from a common precursor. In mammals, maleness is driven by the expression of Sry. SRY subsequently upregulates the related family member Sox9 which is responsible for initiating testis differentiation while repressing factors critical to ovarian development such as FOXL2 and ß-catenin. Here, we report a hitherto uncharacterised role for the ubiquitin-protein ligase NEDD4 in this process. XY Nedd4-deficient mice exhibit complete male-to-female gonadal sex reversal shown by the ectopic upregulation of Foxl2 expression at the time of gonadal sex determination as well as insufficient upregulation of Sox9. This sex reversal extends to germ cells with ectopic expression of SYCP3 in XY Nedd4-/- germ cells and significantly higher Sycp3 transcripts in XY and XX Nedd4-deficient mice when compared to both XY and XX controls. Further, Nedd4-/- mice exhibit reduced gonadal precursor cell formation and gonadal size as a result of reduced proliferation within the developing gonad as well as reduced Nr5a1 expression. Together, these results establish an essential role for NEDD4 in XY gonadal sex determination and development and suggest a potential role for NEDD4 in orchestrating these cell fate decisions through the suppression of the female pathway to ensure proper testis differentiation.


Asunto(s)
Trastornos Testiculares del Desarrollo Sexual 46, XX , Gónadas , Ubiquitina-Proteína Ligasas Nedd4 , Animales , Diferenciación Celular/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Mamíferos , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ovario/metabolismo , Factor de Transcripción SOX9/metabolismo , Testículo/metabolismo
20.
Biology (Basel) ; 10(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34943163

RESUMEN

The 46,XX testicular DSD (disorder/difference of sexual development) and 46,XX ovotesticular DSD (46,XX TDSD and 46,XX OTDSD) phenotypes are caused by genetic rearrangements or point mutations resulting in imbalance between components of the two antagonistic, pro-testicular and pro-ovarian pathways; however, the genetic causes of 46,XX TDSD/OTDSD are not fully understood, and molecular diagnosis for many patients with the conditions is unavailable. Only recently few mutations in the WT1 (WT1 transcription factor; 11p13) gene were described in a group of 46,XX TDSD and 46,XX OTDSD individuals. The WT1 protein contains a DNA/RNA binding domain consisting of four zinc fingers (ZnF) and a three-amino acid (KTS) motif that is present or absent, as a result of alternative splicing, between ZnF3 and ZnF4 (±KTS isoforms). Here, we present a patient with 46,XX TDSD/OTDSD in whom whole exome sequencing revealed a heterozygous de novo WT1 c.1437A>G mutation within an alternative donor splice site which is used for -KTS WT1 isoform formation. So far, no mutation in this splice site has been identified in any patient group. We demonstrated that the mutation results in the retention of intron 9 in the mature mRNA of the 46,XX TDSD/OTDSD patient. In cases when the erroneous mRNA is translated, exclusively the expression of a truncated WT1 +KTS protein lacking ZnF4 and no -KTS protein occurs from the mutated allele of the patient. We discuss potential mechanisms and pathways which can be disturbed upon two conditions: Absence of Zn4F and altered +KTS/-KTS ratio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA