Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Article En | MEDLINE | ID: mdl-38138342

Piezoelectric semiconductors, being materials with both piezoelectric and semiconducting properties, are of particular interest for use in multi-functional devices and naturally result in multi-physics analysis. This study provides analytical solutions for thick piezoelectric semiconductor plates with periodic boundary conditions and includes an investigation of electromechanical coupling effects. Using the linearization of the drift-diffusion equations for both electrons and holes for small carrier concentration perturbations, the governing equations are solved by the extended Stroh formalism, which is a method for solving the eigenvalues and eigenvectors of a problem. The solution, obtained in the form of a series expansion with an unknown coefficient, is solved by matching Fourier series expansions of the boundary conditions. The distributions of electromechanical fields and the concentrations of electrons and holes under four-point bending and three-point bending loads are calculated theoretically. The effects of changing the period length and steady-state carrier concentrations are covered in the discussion, which also reflects the extent of coupling in multi-physics interactions. The results provide a theoretical method for understanding and designing with piezoelectric semiconductor materials.

2.
Sci Rep ; 7(1): 8316, 2017 08 16.
Article En | MEDLINE | ID: mdl-28814791

The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as "mechanical catalysts" to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.


Cell Membrane/chemistry , Molecular Dynamics Simulation , Cell Membrane/metabolism , Integrins/chemistry , Integrins/metabolism , Lipid Bilayers/chemistry , Phospholipids/chemistry
3.
J Food Sci ; 81(10): E2492-E2502, 2016 Oct.
Article En | MEDLINE | ID: mdl-27650700

A total of 50 different configurations of simple radiofrequency (RF) heating at 27.12 MHz of a shell egg were simulated using a finite element model with the purpose of pasteurizing the egg. Temperature-dependent thermal and dielectric properties of the yolk, albumen, and shell were measured, fitted, and introduced into the model. A regression equation that relates the top electrode voltage to the gap between the electrodes and vertical position of the egg was developed. Simulation and experimental results had good agreement in terms of temperature deviation (root mean squared error ranged from 0.35 °C to 0.48 °C) and both results demonstrated the development of a "coagulation ring" around the air cell. The focused heating near the air cell of the egg prevented pasteurization of the egg due to its impact on quality (coagulation). Analysis of the electric field patterns offered a perspective on how nonuniform RF heating could occur in heterogeneous food products. The results can be used to guide development of RF heating for heterogeneous food products and further development of RF pasteurization of eggs.


Egg Shell , Eggs/analysis , Food Analysis/methods , Pasteurization/methods , Radio Waves , Animals , Calibration , Chickens , Computer Simulation , Electrodes , Finite Element Analysis , Hot Temperature , Models, Theoretical , Regression Analysis
4.
J Food Sci ; 79(10): E1991-2004, 2014 Oct.
Article En | MEDLINE | ID: mdl-25224264

UNLABELLED: A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. PRACTICAL APPLICATION: This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable model prediction.


Cooking , Microwaves , Solanum tuberosum , Hot Temperature , Models, Theoretical , Reproducibility of Results , Water
...