Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Sci Adv ; 10(13): eadh0123, 2024 03 29.
Article En | MEDLINE | ID: mdl-38536929

E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.


Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitin/metabolism , Protein Processing, Post-Translational
2.
Stem Cell Rev Rep ; 19(8): 2837-2851, 2023 11.
Article En | MEDLINE | ID: mdl-37605090

In the adult mouse brain, the subventricular zone (SVZ) underlying the lateral ventricles harbours a population of quiescent neural stem cells, which can be activated (aNSCs) to initiate proliferation and generate a neurogenic lineage consisting of transit amplifying progenitors (TAPs), neuroblasts (NBs) and newborn neurons. This process is markedly reduced during aging. Recent studies suggest that the aged SVZ niche decreases the pool of proliferating neural/stem progenitor cells (NSPCs), and hence adult neurogenesis, by causing transcriptomic changes that promote NSC quiescence. The transcription factors that mediate these changes, however, remain unclear. We previously found that the homeobox gene Dbx2 is upregulated in NSPCs of the aged mouse SVZ and can inhibit the growth of NSPC cultures. Here, we further investigate its role as a candidate transcriptional regulator of neurogenic decline. We show that Dbx2 expression is downregulated by Epidermal Growth Factor receptor signaling, which promotes NSPC proliferation and decreases in the aged SVZ. By means of transgenic NSPC lines overexpressing Dbx2, we also show that this gene inhibits NSPC proliferation by hindering the G2/M transition. Furthermore, we exploit RNA sequencing of transgenic NSPCs to elucidate the transcriptomic networks modulated by Dbx2. Among the top hits, we report the downregulation of the molecular pathways implicated in cell cycle progression. Accordingly, we find that Dbx2 function is negatively correlated with the transcriptional signatures of proliferative NSPCs (aNSCs, TAPs and early NBs). These results point to Dbx2 as a transcription factor relaying the anti-neurogenic input of the aged niche to the NSPC transcriptome.


Genes, Homeobox , Neurogenesis , Animals , Mice , Aging/genetics , Cell Division , Neurogenesis/genetics , Neurons , Transcription Factors
3.
Metabolites ; 13(4)2023 Mar 31.
Article En | MEDLINE | ID: mdl-37110165

We show that in S. cerevisiae the metabolic diauxic shift is associated with a H3 lysine 4 tri-methylation (H3K4me3) increase which involves a significant fraction of transcriptionally induced genes which are required for the metabolic changes, suggesting a role for histone methylation in their transcriptional regulation. We show that histone H3K4me3 around the start site correlates with transcriptional induction in some of these genes. Among the methylation-induced genes are IDP2 and ODC1, which regulate the nuclear availability of α-ketoglutarate, which, as a cofactor for Jhd2 demethylase, regulates H3K4 tri-methylation. We propose that this feedback circuit could be used to regulate the nuclear α-ketoglutarate pool concentration. We also show that yeast cells adapt to the absence of Jhd2 by decreasing Set1 methylation activity.

4.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article En | MEDLINE | ID: mdl-36834658

DNA double-strand breaks (DSBs) are harmful DNA lesions, which elicit catastrophic consequences for genome stability if not properly repaired. DSBs can be repaired by either non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these two pathways depends on which proteins bind to the DSB ends and how their action is regulated. NHEJ initiates with the binding of the Ku complex to the DNA ends, while HR is initiated by the nucleolytic degradation of the 5'-ended DNA strands, which requires several DNA nucleases/helicases and generates single-stranded DNA overhangs. DSB repair occurs within a precisely organized chromatin environment, where the DNA is wrapped around histone octamers to form the nucleosomes. Nucleosomes impose a barrier to the DNA end processing and repair machinery. Chromatin organization around a DSB is modified to allow proper DSB repair either by the removal of entire nucleosomes, thanks to the action of chromatin remodeling factors, or by post-translational modifications of histones, thus increasing chromatin flexibility and the accessibility of repair enzymes to the DNA. Here, we review histone post-translational modifications occurring around a DSB in the yeast Saccharomyces cerevisiae and their role in DSB repair, with particular attention to DSB repair pathway choice.


Chromatin , DNA Breaks, Double-Stranded , Chromatin/metabolism , Saccharomyces cerevisiae/metabolism , Histones/metabolism , Nucleosomes/metabolism , DNA Repair , DNA/metabolism , DNA End-Joining Repair , DNA Helicases/metabolism
5.
Cancer Gene Ther ; 30(6): 822-832, 2023 06.
Article En | MEDLINE | ID: mdl-36697763

KDM5B histone demethylase is overexpressed in many cancers and plays an ambivalent role in oncogenesis, depending on the specific context. This ambivalence could be explained by the expression of KDM5B protein isoforms with diverse functional roles, which could be present at different levels in various cancer cell lines. We show here that one of these isoforms, namely KDM5B-NTT, accumulates in breast cancer cell lines due to remarkable protein stability relative to the canonical PLU-1 isoform, which shows a much faster turnover. This isoform is the truncated and catalytically inactive product of an mRNA with a transcription start site downstream of the PLU-1 isoform, and the consequent usage of an alternative ATG for translation initiation. It also differs from the PLU-1 transcript in the inclusion of an additional exon (exon-6), previously attributed to other putative isoforms. Overexpression of this isoform in MCF7 cells leads to an increase in bulk H3K4 methylation and induces derepression of a gene cluster, including the tumor suppressor Cav1 and several genes involved in the interferon-alpha and -gamma response. We discuss the relevance of this finding considering the hypothesis that KDM5B may possess regulatory roles independent of its catalytic activity.


Breast Neoplasms , Histones , Humans , Female , Methylation , Histones/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Breast Neoplasms/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Gene Expression , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism
7.
Life (Basel) ; 12(11)2022 Nov 09.
Article En | MEDLINE | ID: mdl-36362982

We analyzed the morphology and the transcriptomic changes of human neural stem progenitor cells (hNSPCs) grown on laminin in adherent culture conditions and subjected to simulated microgravity for different times in a random positioning machine apparatus. Low-cell-density cultures exposed to simulated microgravity for 24 h showed cell aggregate formation and significant modulation of several genes involved in focal adhesion, cytoskeleton regulation, and cell cycle control. These effects were much more limited in hNSPCs cultured at high density in the same conditions. We also found that some of the genes modulated upon exposure to simulated microgravity showed similar changes in hNSPCs grown without laminin in non-adherent culture conditions under normal gravity. These results suggest that reduced gravity counteracts the interactions of cells with the extracellular matrix, inducing morphological and transcriptional changes that can be observed in low-density cultures.

8.
Front Genet ; 13: 896771, 2022.
Article En | MEDLINE | ID: mdl-35495134

[This corrects the article DOI: 10.3389/fgene.2021.639602.].

9.
Front Immunol ; 12: 649475, 2021.
Article En | MEDLINE | ID: mdl-33936070

In human primary dendritic cells (DC) rapamycin-an autophagy inducer and protein synthesis inhibitor-overcomes the autophagy block induced by Mycobacterium tuberculosis (Mtb) and promotes a Th1 response via IL-12 secretion. Here, the immunostimulatory activity of rapamycin in Mtb-infected DC was further investigated by analyzing both transcriptome and translatome gene profiles. Hundreds of differentially expressed genes (DEGs) were identified by transcriptome and translatome analyses of Mtb-infected DC, and some of these genes were found further modulated by rapamycin. The majority of transcriptome-associated DEGs overlapped with those present in the translatome, suggesting that transcriptionally stimulated mRNAs are also actively translated. In silico analysis of DEGs revealed significant changes in intracellular cascades related to cytokine production, cytokine-induced signaling and immune response to pathogens. In particular, rapamycin treatment of Mtb-infected DC caused an enrichment of IFN-ß, IFN-λ and IFN-stimulated gene transcripts in the polysome-associated RNA fraction. In addition, rapamycin led to an increase of IL-12, IL-23, IL-1ß, IL-6, and TNF-α but to a reduction of IL-10. Interestingly, upon silencing or pharmacological inhibition of GSK-3ß, the rapamycin-driven modulation of the pro- and anti-inflammatory cytokine balance was lost, indicating that, in Mtb-infected DC, GSK-3ß acts as molecular switch for the regulation of the cytokine milieu. In conclusion, our study sheds light on the molecular mechanism by which autophagy induction contributes to DC activation during Mtb infection and points to rapamycin and GSK-3ß modulators as promising compounds for host-directed therapy in the control of Mtb infection.


Autophagy/drug effects , Dendritic Cells/drug effects , Mycobacterium tuberculosis/immunology , Sirolimus/pharmacology , Tuberculosis/drug therapy , Autophagy/genetics , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/immunology , Gene Expression Profiling , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Primary Cell Culture , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Tuberculosis/immunology , Tuberculosis/microbiology
10.
Front Genet ; 12: 639602, 2021.
Article En | MEDLINE | ID: mdl-33859667

Eukaryotic genomes are wrapped around nucleosomes and organized into different levels of chromatin structure. Chromatin organization has a crucial role in regulating all cellular processes involving DNA-protein interactions, such as DNA transcription, replication, recombination and repair. Histone post-translational modifications (HPTMs) have a prominent role in chromatin regulation, acting as a sophisticated molecular code, which is interpreted by HPTM-specific effectors. Here, we review the role of histone lysine methylation changes in regulating the response to radiation-induced genotoxic damage in mammalian cells. We also discuss the role of histone methyltransferases (HMTs) and histone demethylases (HDMs) and the effects of the modulation of their expression and/or the pharmacological inhibition of their activity on the radio-sensitivity of different cell lines. Finally, we provide a bioinformatic analysis of published datasets showing how the mRNA levels of known HMTs and HDMs are modulated in different cell lines by exposure to different irradiation conditions.

11.
Environ Microbiol ; 23(7): 3957-3969, 2021 07.
Article En | MEDLINE | ID: mdl-33200556

Earth's microbial biosphere extends down through the crust and much of the subsurface, including those microbial ecosystems located within cave systems. Here, we elucidate the microbial ecosystems within anthropogenic 'caves'; the Iron-Age, subterranean tombs of central Italy. The interior walls of the rock (calcium-rich macco) were painted ~2500 years ago and are covered with CaCO3 needles (known as moonmilk). The aims of the current study were to: identify biological/geochemical/biophysical determinants of and characterize bacterial communities involved in CaCO3 precipitation; challenge the maxim that biogenic activity necessarily degrades surfaces; locate the bacterial cells that are the source of the CaCO3 precipitate; and gain insight into the kinetics of moonmilk formation. We reveal that this environment hosts communities that consist primarily of bacteria that are mesophilic for temperature and xerotolerance (including Actinobacteria, Bacteroidetes and Proteobacteria); is populated by photosynthetic Cyanobacteria exhibiting heterotrophic nutrition (Calothrix and Chroococcidiopsis); and has CaCO3 precipitating on the rock surfaces (confirmation that this process is biogenic) that acts to preserve rather than damage the painted surface. We also identified that some community members are psychrotolerant (Polaromonas), acidotolerant or acidophilic (members of the Acidobacteria), or resistant to ionizing radiation (Brevundimonas and Truepera); elucidate the ways in which microbiology impacts mineralogy and vice versa; and reveal that biogenic formation of moonmilk can occur rapidly, that is, over a period of 10 to 56 years. We discuss the paradox that these ecosystems, that are for the most part in the dark and lack primary production, are apparently highly active, biodiverse and biomass-rich.


Cyanobacteria , Ecosystem , Acidobacteria , Caves , Civilization
12.
Dev Cell ; 53(4): 431-443.e23, 2020 05 18.
Article En | MEDLINE | ID: mdl-32386600

During organogenesis, coherent organ growth arises from spatiotemporally coordinated decisions of individual cells. In the root of Arabidopsis thaliana, this coordination results in the establishment of a division and a differentiation zone. Cells continuously move through these zones; thus, a major question is how the boundary between these domains, the transition zone, is formed and maintained. By combining molecular genetics with computational modeling, we reveal how an auxin/PLETHORA/ARR-B network controls these dynamic patterning processes. We show that after germination, cell division causes a drop in distal PLT2 levels that enables transition zone formation and ARR12 activation. The resulting PLT2-ARR12 antagonism controls expansion of the division zone (the meristem). The successive ARR1 activation antagonizes PLT2 through inducing the cell-cycle repressor KRP2, thus setting final meristem size. Our work indicates a key role for the interplay between cell division dynamics and regulatory networks in root zonation and transition zone patterning.


Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Indoleacetic Acids/pharmacology , Plant Roots/growth & development , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Developmental , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Transcription Factors/genetics
13.
ACS Med Chem Lett ; 11(5): 1035-1040, 2020 May 14.
Article En | MEDLINE | ID: mdl-32435422

Artesunic acid and artemisinin are natural substances with promiscuous anticancer activity against different types of cancer cell lines. The mechanism of action of these compounds is associated with the formation of reactive radical species by cleavage of the sesquiterpene pharmacophore endoperoxide bridge. Here we suggested topoisomerase 1 as a possible molecular target for the improvement of the anticancer activity of these compounds. In this context, we report that novel hybrid and dimer derivatives of artesunic acid and artemisinin, bearing camptothecin and SN38 as side-chain biological effectors, can inhibit growth of yeast cells overexpressing human topoisomerase 1 and its enzymatic activity in vitro. These derivatives showed also anticancer activity in melanoma cell lines higher than camptothecin and paclitaxel. In silico molecular docking calculations highlighted a common binding mode for the novel derivatives, with the sesquiterpene lactone scaffold being located near the traditional recognition site for camptothecin, while the bioactive side-chain effector laid in the camptothecin cleft.

14.
Sci Rep ; 10(1): 6562, 2020 04 16.
Article En | MEDLINE | ID: mdl-32300147

Exposure of the developing or adult brain to ionizing radiation (IR) can cause cognitive impairment and/or brain cancer, by targeting neural stem/progenitor cells (NSPCs). IR effects on NSPCs include transient cell cycle arrest, permanent cell cycle exit/differentiation, or cell death, depending on the experimental conditions. In vivo studies suggest that brain age influences NSPC response to IR, but whether this is due to intrinsic NSPC changes or to niche environment modifications remains unclear. Here, we describe the dose-dependent, time-dependent effects of X-ray IR in NSPC cultures derived from the mouse foetal cerebral cortex. We show that, although cortical NSPCs are resistant to low/moderate IR doses, high level IR exposure causes cell death, accumulation of DNA double-strand breaks, activation of p53-related molecular pathways and cell cycle alterations. Irradiated NSPC cultures transiently upregulate differentiation markers, but recover control levels of proliferation, viability and gene expression in the second week post-irradiation. These results are consistent with previously described in vivo effects of IR in the developing mouse cortex, and distinct from those observed in adult NSPC niches or in vitro adult NSPC cultures, suggesting that intrinsic differences in NSPCs of different origins might determine, at least in part, their response to IR.


Cerebral Cortex/cytology , Neural Stem Cells/cytology , Neural Stem Cells/radiation effects , Animals , Biomarkers/metabolism , Cell Cycle/radiation effects , Cell Death/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Dose-Response Relationship, Radiation , Histones/metabolism , Kinetics , Mice , Models, Biological , Tumor Suppressor Protein p53/metabolism , Up-Regulation/radiation effects , X-Rays
15.
FASEB J ; 34(4): 4870-4889, 2020 04.
Article En | MEDLINE | ID: mdl-32077151

The COP9 signalosome (CSN) is a conserved eukaryotic complex, essential for vitality in all multicellular organisms and critical for the turnover of key cellular proteins through catalytic and non-catalytic activities. Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of the CSN complex, since it includes a conserved enzymatic core but lacks non-catalytic activities, probably explaining its non-essentiality for life. A previous transcriptomic analysis of an S. cerevisiae strain deleted in the CSN5/RRI1 gene, encoding to the CSN catalytic subunit, revealed a downregulation of genes involved in lipid metabolism. We now show that the S. cerevisiae CSN holocomplex is essential for cellular lipid homeostasis. Defects in CSN assembly or activity lead to decreased quantities of ergosterol and unsaturated fatty acids (UFA); vacuole defects; diminished lipid droplets (LDs) size; and to accumulation of endoplasmic reticulum (ER) stress. The molecular mechanism behind these findings depends on CSN involvement in upregulating mRNA expression of SPT23. Spt23 is a novel activator of lipid desaturation and ergosterol biosynthesis. Our data reveal for the first time a functional link between the CSN holocomplex and Spt23. Moreover, CSN-dependent upregulation of SPT23 transcription is necessary for the fine-tuning of lipid homeostasis and for cellular health.


COP9 Signalosome Complex/metabolism , Ergosterol/biosynthesis , Fatty Acids, Unsaturated/metabolism , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , COP9 Signalosome Complex/genetics , Endoplasmic Reticulum Stress , Ergosterol/genetics , Fatty Acids, Unsaturated/genetics , Gene Deletion , Lipid Droplets/metabolism , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
16.
J Enzyme Inhib Med Chem ; 35(1): 129-137, 2020 Dec.
Article En | MEDLINE | ID: mdl-31694426

The 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme of the mevalonate pathway for the synthesis of cholesterol in mammals (ergosterol in fungi), is inhibited by statins, a class of cholesterol lowering drugs. Indeed, statins are in a wide medical use, yet statins treatment could induce side effects as hepatotoxicity and myopathy in patients. We used Saccharomyces cerevisiae as a model to investigate the effects of statins on mitochondria. We demonstrate that statins are active in S.cerevisiae by lowering the ergosterol content in cells and interfering with the attachment of mitochondrial DNA to the inner mitochondrial membrane. Experiments on murine myoblasts confirmed these results in mammals. We propose that the instability of mitochondrial DNA is an early indirect target of statins.


DNA, Mitochondrial/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Saccharomyces cerevisiae/chemistry , DNA, Mitochondrial/chemistry , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Mitochondrial Membranes/chemistry
17.
Sci Rep ; 9(1): 16259, 2019 11 07.
Article En | MEDLINE | ID: mdl-31700158

Cystic fibrosis (CF) is an inherited disease that is characterised by susceptibility to bacterial infections and chronic lung inflammation. Recently, it was suggested that macrophages contribute to impaired host defence and excessive inflammatory responses in CF. Indeed, dysfunction attributed to CF macrophages includes decreased bacterial killing and exaggerated inflammatory responses. However, the mechanisms behind such defects have only been partially defined. MicroRNAs (miRNAs) have emerged as key regulators of several macrophage functions, including their activation, differentiation and polarisation. The goal of this study was to investigate whether miRNA dysregulation underlies the functional abnormalities of CF macrophages. MiRNA profiling of macrophages was performed, with 22 miRNAs identified as differentially expressed between CF and non-CF individuals. Among these, miR-146a was associated with significant enrichment of validated target genes involved in responses to microorganisms and inflammation. As miR-146a dysregulation has been reported in several human inflammatory diseases, we analysed the impact of increased miR-146a expression on inflammatory responses of CF macrophages. These data show that inhibition of miR-146a in lipopolysaccharide-stimulated CF macrophages results in increased interleukin-6 production, which suggests that miR-146a overexpression in CF is functional, to restrict inflammatory responses.


Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Gene Expression Regulation , Interleukin-6/metabolism , Macrophages/metabolism , MicroRNAs/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Humans , RNA Interference , Transcriptome
18.
Sci Rep ; 9(1): 14350, 2019 10 04.
Article En | MEDLINE | ID: mdl-31586085

The variations in the membrane proteome of tomato fruit pericarp during ripening have been investigated by mass spectrometry-based label-free proteomics. Mature green (MG30) and red ripe (R45) stages were chosen because they are pivotal in the ripening process: MG30 corresponds to the end of cellular expansion, when fruit growth has stopped and fruit starts ripening, whereas R45 corresponds to the mature fruit. Protein patterns were markedly different: among the 1315 proteins identified with at least two unique peptides, 145 significantly varied in abundance in the process of fruit ripening. The subcellular and biochemical fractionation resulted in GO term enrichment for organelle proteins in our dataset, and allowed the detection of low-abundance proteins that were not detected in previous proteomic studies on tomato fruits. Functional annotation showed that the largest proportion of identified proteins were involved in cell wall metabolism, vesicle-mediated transport, hormone biosynthesis, secondary metabolism, lipid metabolism, protein synthesis and degradation, carbohydrate metabolic processes, signalling and response to stress.


Fruit/growth & development , Microsomes/chemistry , Proteome/analysis , Solanum lycopersicum/growth & development , Fruit/chemistry , Fruit/cytology , Fruit/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Solanum lycopersicum/chemistry , Solanum lycopersicum/cytology , Solanum lycopersicum/metabolism , Mass Spectrometry , Microsomes/metabolism , Proteome/metabolism , Proteomics/methods
19.
Neurotherapeutics ; 16(3): 543-553, 2019 07.
Article En | MEDLINE | ID: mdl-31161490

Aging is associated with cognitive decline and increased vulnerability to neurodegenerative diseases. The progressive extension of the average human lifespan is bound to lead to a corresponding increase in the fraction of cognitively impaired elderly individuals among the human population, with an enormous societal and economic burden. At the cellular and tissue levels, cognitive decline is linked to a reduction in specific neuronal subpopulations, a widespread decrease in synaptic plasticity and an increase in neuroinflammation due to an enhanced activation of astrocytes and microglia, but the molecular mechanisms underlying these functional changes during normal aging and in neuropathological conditions remain poorly understood. In this review, we summarize very recent and outstanding progress in elucidating the molecular changes associated with cognitive decline through the genome-wide profiling of aging brain cells at different molecular levels (genomic, epigenomic, transcriptomic, proteomic). We discuss how the correlation of different molecular and phenotypic traits driven by mathematical and computational analyses of large datasets has led to the prediction of key molecular nodes of neurodegenerative pathways, and provide a few examples of candidate regulators of cognitive decline identified with these approaches. Furthermore, we highlight the dysregulation of the synaptic transcriptome in neuronal cells and of the inflammatory transcriptome in glial cells as some of the key events during normal and neuropathological human brain aging.


Aging/genetics , Brain/physiology , Genetic Association Studies , Animals , Brain/anatomy & histology , Brain/metabolism , Cognitive Aging/physiology , Epigenomics , Gene Expression Profiling , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology
20.
Molecules ; 24(9)2019 May 04.
Article En | MEDLINE | ID: mdl-31060229

Background: KDM5 enzymes are H3K4 specific histone demethylases involved in transcriptional regulation and DNA repair. These proteins are overexpressed in different kinds of cancer, including breast, prostate and bladder carcinomas, with positive effects on cancer proliferation and chemoresistance. For these reasons, these enzymes are potential therapeutic targets. Methods: In the present study, we analyzed the effects of three different inhibitors of KDM5 enzymes in MCF-7 breast cancer cells over-expressing one of them, namely KDM5B/JARID1B. In particular we tested H3K4 demethylation (western blot); radio-sensitivity (cytoxicity and clonogenic assays) and damage accumulation (COMET assay and kinetics of H2AX phosphorylation). Results: we show that all three compounds with completely different chemical structures can selectively inhibit KDM5 enzymes and are capable of increasing sensitivity of breast cancer cells to ionizing radiation and radiation-induced damage. Conclusions: These findings confirm the involvement of H3K4 specific demethylases in the response to DNA damage, show a requirement of the catalytic function and suggest new strategies for the therapeutic use of their inhibitors.


Breast Neoplasms/enzymology , Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/genetics , Nuclear Proteins/genetics , Radiation-Sensitizing Agents/pharmacology , Repressor Proteins/genetics , Small Molecule Libraries/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , MCF-7 Cells , Models, Molecular , Molecular Structure , Nuclear Proteins/metabolism , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/chemistry , Repressor Proteins/metabolism , Small Molecule Libraries/chemistry , Up-Regulation/drug effects , Up-Regulation/radiation effects
...