Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e16796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332805

RESUMEN

Bats subject to high rates of fatalities at wind-energy facilities are of high conservation concern due to the long-term, cumulative effects they have, but the impact on broader bat populations can be difficult to assess. One reason is the poor understanding of the geographic source of individual fatalities and whether they constitute migrants or more local individuals. Here, we used stable hydrogen isotopes, trace elements and species distribution models to determine the most likely summer geographic origins of three different bat species (Lasiurus borealis, L. cinereus, and Lasionycteris noctivagans) killed at wind-energy facilities in Ohio and Maryland in the eastern United States. In Ohio, 41.6%, 21.3%, 2.2% of all individuals of L. borealis, L. cinereus, and L. noctivagans, respectively, had evidence of movement. In contrast, in Maryland 77.3%, 37.1%, and 27.3% of these same species were classified as migrants. Our results suggest bats killed at a given wind facility are likely derived from migratory as well as resident populations. Finally, there is variation in the proportion of migrants killed between seasons for some species and evidence of philopatry to summer roosts. Overall, these results indicate that the impact of wind-energy facilities on bat populations occurs across a large geographic extent, with the proportion of migrants impacted likely to vary across species and sites. Similar studies should be conducted across a broader geographic scale to understand the impacts on bat populations from wind-energy facilities.


Asunto(s)
Quirópteros , Viento , Humanos , Animales , Estados Unidos , Maryland , Estaciones del Año , Ohio
2.
Conserv Biol ; 38(2): e14191, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38180844

RESUMEN

Bird populations are declining globally. Wind and solar energy can reduce emissions of fossil fuels that drive anthropogenic climate change, yet renewable-energy production represents a potential threat to bird species. Surveys to assess potential effects at renewable-energy facilities are exclusively local, and the geographic extent encompassed by birds killed at these facilities is largely unknown, which creates challenges for minimizing and mitigating the population-level and cumulative effects of these fatalities. We performed geospatial analyses of stable hydrogen isotope data obtained from feathers of 871 individuals of 24 bird species found dead at solar- and wind-energy facilities in California (USA). Most species had individuals with a mix of origins, ranging from 23% to 98% nonlocal. Mean minimum distances to areas of likely origin for nonlocal individuals were as close as 97 to >1250 km, and these minimum distances were larger for species found at solar-energy facilities in deserts than at wind-energy facilities in grasslands (Cohen's d = 6.5). Fatalities were drawn from an estimated 30-100% of species' desingated ranges, and this percentage was significantly smaller for species with large ranges found at wind facilities (Pearson's r = -0.67). Temporal patterns in the geographic origin of fatalities suggested that migratory movements and nonmigratory movements, such as dispersal and nomadism, influence exposure to fatality risk for these birds. Our results illustrate the power of using stable isotope data to assess the geographic extent of renewable-energy fatalities on birds. As the buildout of renewable-energy facilities continues, accurate assessment of the geographic footprint of wildlife fatalities can be used to inform compensatory mitigation for their population-level and cumulative effects.


Extensión geográfica de las poblaciones de aves afectadas por desarrollos de energía renovable Resumen Las poblaciones mundiales de aves están en declive. Las energías solar y eólica pueden reducir las emisiones de combustibles fósiles que causan el cambio climático, aunque la producción de energías renovables representa una amenaza potencial para las aves. Los censos para evaluar los efectos potenciales en los centros de energía renovable son exclusivamente locales y se sabe poco sobre la extensión geográfica representada por las aves que mueren en estas instalaciones, lo que plantea obstáculos para mitigar los efectos acumulativos y de nivel poblacional de estas muertes. Realizamos análisis geoespaciales con datos del isótopo de hidrógeno estable obtenido de las plumas de 871 ejemplares de 24 especies de aves que fueron hallados muertos en los centros de energía solar y eólica en California, EE.UU. La mayoría de las especies contó con ejemplares de orígenes mixtos, con un rango del 23% al 98% no local. La media de la distancia mínima a las áreas de probable origen de los ejemplares no locales varía entre los 97 hasta > 1,250 km. Estas distancias mínimas fueron mayores para las especies encontradas en los centros de energía solar situadas en desiertos que para las especies encontradas en los centros de energía eólica localizadas en pastizales (d de Cohen = 6.5). Las muertes representan un 30­100% de la extensión de las especies. Este porcentaje fue significativamente menor para las especies con extensiones amplias encontradas en instalaciones eólicas (r de Pearson = ­0.67). Los patrones temporales en el origen geográfico de las muertes sugieren que los movimientos migratorios y no migratorios, como la dispersión y el nomadismo, influyen en la exposición de estas aves al riesgo de muerte. Nuestros resultados demuestran la utilidad de los isótopos estables para evaluar el alcance geográfico de las muertes de aves asociadas a energías renovables. Con el progresivo aumento de instalaciones de energía renovable, una evaluación precisa de la huella geográfica de la mortandad de fauna salvaje podrá guiar la mitigación compensatoria de sus efectos acumulativos y de nivel poblacional.


Asunto(s)
Conservación de los Recursos Naturales , Energía Renovable , Animales , Aves , Isótopos , Viento
3.
PeerJ ; 11: e16580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38084143

RESUMEN

Background: Operation of wind turbines has resulted in collision fatalities for several bat species, and one proven method to reduce these fatalities is to limit wind turbine blade rotation (i.e., curtail turbines) when fatalities are expected to be highest. Implementation of curtailment can potentially be optimized by targeting times when females are most at risk, as the proportion of females limits the growth and stability of many bat populations. The Brazilian free-tailed bat (Tadarida brasiliensis) is the most common bat fatality at wind energy facilities in California and Texas, and yet there are few available data on the sex ratios of the carcasses that are found. Understanding the sex ratios of fatalities in California and Texas could aid in planning population conservation strategies such as informed curtailment. Methods: We used PCR to determine the sex of bat carcasses collected from wind energy facilities during post-construction monitoring (PCM) studies in California and Texas. In California, we received samples from two locations within the Altamont Pass Wind Resource Area in Alameda County: Golden Hills (GH) (n = 212) and Golden Hills North (GHN) (n = 312). In Texas, we received samples from three wind energy facilities: Los Mirasoles (LM) (Hidalgo County and Starr County) (n = 252), Los Vientos (LV) (Starr County) (n = 568), and Wind Farm A (WFA) (San Patricio County and Bee County) (n = 393). Results: In California, the sex ratios of fatalities did not differ from 50:50, and the sex ratio remained stable over the survey years, but the seasonal timing of peak fatalities was inconsistent. In 2017 and 2018, fatalities peaked between September and October, whereas in 2019 and 2020 fatalities peaked between May and June. In Texas, sex ratios of fatalities varied between locations, with Los Vientos being female-skewed and Wind Farm A being male-skewed. The sex ratio of fatalities was also inconsistent over time. Lastly, for each location in Texas with multiple years studied, we observed a decrease in the proportion of female fatalities over time. Discussion: We observed unexpected variation in the seasonal timing of peak fatalities in California and differences in the sex ratio of fatalities across time and facility location in Texas. In Texas, proximity to different roost types (bridge or cave) likely influenced the sex ratio of fatalities at wind energy facilities. Due to the inconsistencies in the timing of peak female fatalities, we were unable to determine an optimum curtailment period; however, there may be location-specific trends that warrant future investigation. More research should be done over the entirety of the bat active season to better understand these trends in Texas. In addition, standardization of PCM studies could assist future research efforts, enhance current monitoring efforts, and facilitate research on post-construction monitoring studies.


Asunto(s)
Quirópteros , Energía Renovable , Femenino , Masculino , Animales , Razón de Masculinidad , Texas/epidemiología , Estaciones del Año
4.
Drug Metab Dispos ; 51(7): 851-861, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37055191

RESUMEN

Advancement of endogenous biomarkers for drug transporters as a tool for assessing drug-drug interactions (DDIs) depends on initial identification of biomarker candidates and relies heavily on biomarker validation and its response to reference inhibitors in vivo. To identify endogenous biomarkers of breast cancer resistance protein (BCRP), we applied metabolomic approaches to profile plasma from Bcrp-/-, multidrug resistance protein (Mdr)1a/1b-/-, and Bcrp/Mdr1a/1b-/- mice. Approximately 130 metabolites were significantly altered in Bcrp and P-glycoprotein (P-gp) knockout mice, indicating numerous metabolite-transporter interactions. We focused on BCRP-specific substrates and identified riboflavin, which was significantly elevated in the plasma of Bcrp single- and Bcrp/P-gp double- but not P-gp single-knockout mice. Dual BCRP/P-gp inhibitor elacridar caused a dose-dependent increase of the area under the plasma concentration-time curve (AUC) of riboflavin in mice (1.51- and 1.93-fold increases by 30 and 150 mg/kg elacridar, respectively). In three cynomolgus monkeys, we observed approximately 1.7-fold increases in the riboflavin concentrations caused by ML753286 (10 mg/kg), which correlated well with the increase of sulfasalazine, a known BCRP probe in monkeys. However, the BCRP inhibitor had no effect on isobutyryl carnitine, arginine, or 2-arachidonoyl glycerol levels. Additionally, clinical studies on healthy volunteers indicated low intrasubject and intermeal variability of plasma riboflavin concentrations. In vitro experiments using membrane vesicles demonstrated riboflavin as a select substrate of monkey and human BCRP over P-gp. Collectively, this proof-of-principle study indicates that riboflavin is a suitable endogenous probe for BCRP activity in mice and monkeys and that future investigation of riboflavin as a blood-based biomarker of human BCRP is warranted. SIGNIFICANCE STATEMENT: Our results identified riboflavin as an endogenous biomarker candidate of BCRP. Its selectivity, sensitivity, and predictivity regarding BCRP inhibition have been explored. The findings of this study highlight riboflavin as an informative BCRP plasma biomarker in animal models. The utility of this biomarker requires further validation by evaluating the effects of BCRP inhibitors of different potencies on riboflavin plasma concentrations in humans. Ultimately, riboflavin may shed light on the risk assessment of BCRP DDIs in early clinical trials.


Asunto(s)
Encéfalo , Neoplasias de la Mama , Humanos , Ratones , Animales , Femenino , Encéfalo/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Ratones Noqueados , Biomarcadores/metabolismo , Interacciones Farmacológicas , Neoplasias de la Mama/metabolismo
5.
Oecologia ; 199(3): 711-724, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35739283

RESUMEN

Alder (Alnus spp.) and Pacific salmon (Oncorhynchus spp.) provide key nutrient subsidies to freshwater systems. In southwestern Alaska, alder-derived nutrients (ADNs) are increasing as alder cover expands in response to climate warming, while climate change and habitat degradation are reducing marine-derived nutrients (MDNs) in salmon-spawning habitats. To assess the relative influences of ADN and MDN on aquatic microbial community structure and function, we analyzed lake chemistry, bacterial community structure, and microbial metabolism in 13 lakes with varying alder cover and salmon abundance in southwestern Alaska. We conducted bioassays to determine microbial nutrient limitation and physical factors modulating microbial response to nutrient inputs (+N, +P and +NP treatments). Seasonal shifts in bacterial community structure (F = 7.47, P < 0.01) coincided with changes in lake nitrogen (N) and phosphorus (P) concentrations (r2 = 0.19 and 0.16, both P < 0.05), and putrescine degradation (r2 = 0.13, P = 0.06), suggesting the influx and microbial use of MDN. Higher microbial metabolism occurred in summer than spring, coinciding with salmon runs. Increased microbial metabolism occurred in lakes where more salmon spawned. Microbial metabolic activity was unrelated to alder cover, likely because ADN provides less resource diversity than MDN. When nutrients were added to spring samples, there was greater substrate use by microbial communities from lakes with elevated Chl a concentrations and large relative catchment areas (ß estimates for all treatments > 0.56, all P < 0.07). Thus, physical watershed and lake features mediate the effects of nutrient subsidies on aquatic microbial metabolic activity.


Asunto(s)
Alnus , Microbiota , Animales , Ecosistema , Lagos , Nutrientes , Salmón/metabolismo
6.
J Wildl Dis ; 58(3): 652-657, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35439810

RESUMEN

White-nose syndrome (WNS) is an emerging fungal epizootic disease that has caused large-scale mortality in several species of North American bats. The fungus that causes WNS, Pseudogymnoascus destructans (Pd), has also been detected in bat species without diagnostic signs of WNS. Although these species could play a role in WNS spread, understanding of the spatial and temporal extents of Pd occurrence on WNS-resistant species is limited. This study evaluated the presence of Pd on 272 individuals of three species of migratory tree-roosting bats: hoary (Lasiurus cinereus), eastern red (Lasiurus borealis), and silver-haired (Lasionycteris noctivagans) bats, obtained opportunistically during summer and autumn from throughout much of their ranges in North America. We also compared tissue sampling protocols (i.e., tissue swabbing, fur swabbing, and DNA extraction of excised wing tissue). We detected Pd on three eastern red bats from Illinois and Ohio, US, one silver-haired bat from West Virginia, US, and one hoary bat from New York, US, all via DNA extracted from wing tissue of carcasses. These results document the first publicly reported detections of Pd on a hoary bat and on migratory bats during the autumn migratory period, and demonstrate the potential for using carcasses salvaged at wind-energy facilities to monitor for Pd.


Asunto(s)
Ascomicetos , Quirópteros , Micosis , Animales , Quirópteros/microbiología , Micosis/epidemiología , Micosis/veterinaria , Síndrome , Árboles
7.
R Soc Open Sci ; 9(3): 211558, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35360356

RESUMEN

Renewable energy production can kill individual birds, but little is known about how it affects avian populations. We assessed the vulnerability of populations for 23 priority bird species killed at wind and solar facilities in California, USA. Bayesian hierarchical models suggested that 48% of these species were vulnerable to population-level effects from added fatalities caused by renewables and other sources. Effects of renewables extended far beyond the location of energy production to impact bird populations in distant regions across continental migration networks. Populations of species associated with grasslands where turbines were located were most vulnerable to wind. Populations of nocturnal migrant species were most vulnerable to solar, despite not typically being associated with deserts where the solar facilities we evaluated were located. Our findings indicate that addressing declines of North American bird populations requires consideration of the effects of renewables and other anthropogenic threats on both nearby and distant populations of vulnerable species.

8.
Cell Mol Life Sci ; 79(4): 204, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35332383

RESUMEN

Due to activation of fibroblast into cancer-associated fibroblasts, there is often an increased deposition of extracellular matrix and fibrillar collagens, e.g. type III collagen, in the tumor microenvironment (TME) that leads to tumor fibrosis (desmoplasia). Tumor fibrosis is closely associated with treatment response and poor prognosis for patients with solid tumors. To assure that the best possible treatment option is provided for patients, there is medical need for identifying patients with high (or low) fibrotic activity in the TME. Measuring unique collagen fragments such as the pro-peptides released into the bloodstream during fibrillar collagen deposition in the TME can provide a non-invasive measure of the fibrotic activity. Based on data from 8 previously published cohorts, this review provides insight into the prognostic value of quantifying tumor fibrosis by measuring the pro-peptide of type III collagen in serum of a total of 1692 patients with different solid tumor types and discusses the importance of tumor fibrosis for understanding prognosis and for potentially guiding future drug development efforts that aim at overcoming the poor outcome associated with a fibrotic TME.


Asunto(s)
Colágeno Tipo III , Neoplasias , Colágeno , Fibrosis , Humanos , Péptidos , Microambiente Tumoral
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1848): 20210008, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35184589

RESUMEN

Shifting range limits are predicted for many species as the climate warms. However, the rapid pace of climate change will challenge the natural dispersal capacity of long-lived, sessile organisms such as forest trees. Adaptive responses of populations will, therefore, depend on levels of genetic variation and plasticity for climate-responsive traits, which likely vary across the range due to expansion history and current patterns of selection. Here, we study levels of genetic and plastic variation for phenology and growth traits in populations of red spruce (Picea rubens), from the range core to the highly fragmented trailing edge. We measured more than 5000 offspring sampled from three genetically distinct regions (core, margin and edge) grown in three common gardens replicated along a latitudinal gradient. Genetic variation in phenology and growth showed low to moderate heritability and differentiation among regions, suggesting some potential to respond to selection. Phenology traits were highly plastic, but this plasticity was generally neutral or maladaptive in the effect on growth, revealing a potential liability under warmer climates. These results suggest future climate adaptation will depend on the regional availability of genetic variation in red spruce and provide a resource for the design and management of assisted gene flow. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.


Asunto(s)
Picea , Aclimatación , Cambio Climático , Genotipo , Fenotipo , Picea/genética , Plásticos
10.
Evolution ; 75(6): 1450-1465, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33914360

RESUMEN

Organisms are constantly challenged by pathogens and pests, which can drive the evolution of growth-defense strategies. Plant stomata are essential for gas exchange during photosynthesis and conceptually lie at the intersection of the physiological demands of growth and exposure to foliar fungal pathogens. Generations of natural selection for locally adapted growth-defense strategies can eliminate variation between traits, potentially masking trade-offs and selection conflicts that may have existed in the past. Hybrid populations offer a unique opportunity to reset the clock on selection and to study potentially maladaptive trait variation before selection removes it. We study the interactions of growth, stomatal, ecopysiological, and disease resistance traits in poplars (Populus) after infection by the leaf rust Melampsora medusae. Phenotypes were measured in a common garden and genotyped at 227K SNPs. We isolate the effects of hybridization on trait variance, discover correlations between stomatal, ecophysiology, and disease resistance, examine trade-offs and selection conflicts, and explore the evolution of growth-defense strategies potentially mediated by selection for stomatal traits on the upper leaf surface. These results suggest an important role for stomata in determining growth-defense strategies in organisms susceptible to foliar pathogens, and reinforces the contribution of hybridization studies toward our understanding of trait evolution.


Asunto(s)
Resistencia a la Enfermedad/genética , Hibridación Genética , Estomas de Plantas/fisiología , Populus/genética , Adaptación Fisiológica , Basidiomycota/patogenicidad , Genética de Población , América del Norte , Fenotipo , Enfermedades de las Plantas/microbiología , Populus/microbiología
11.
PeerJ ; 8: e10082, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133780

RESUMEN

The expansion of the wind energy industry has had benefits in terms of increased renewable energy production but has also led to increased mortality of migratory bats due to interactions with wind turbines. A key question that could guide bat-related management activities is identifying the geographic origin of bats killed at wind-energy facilities. Generating this information requires developing new methods for identifying the geographic sources of individual bats. Here we explore the viability of assigning geographic origin using trace element analyses of fur to infer the summer molting location of eastern red bats (Lasiurus borealis). Our approach is based on the idea that the concentration of trace elements in bat fur is related through the food chain to the amount of trace elements present in the soil, which varies across large geographic scales. Specifically, we used inductively coupled plasma-mass spectrometry to determine the concentration of fourteen trace elements in fur of 126 known-origin eastern red bats to generate a basemap for assignment throughout the range of this species in eastern North America. We then compared this map to publicly available soil trace element concentrations for the U.S. and Canada, used a probabilistic framework to generate likelihood-of-origin maps for each bat, and assessed how well trace element profiles predicted the origins of these individuals. Overall, our results suggest that trace elements allow successful assignment of individual bats 80% of the time while reducing probable locations in half. Our study supports the use of trace elements to identify the geographic origin of eastern red and perhaps other migratory bats, particularly when combined with data from other biomarkers such as genetic and stable isotope data.

12.
Evol Appl ; 13(9): 2190-2205, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33005218

RESUMEN

Understanding the factors influencing the current distribution of genetic diversity across a species range is one of the main questions of evolutionary biology, especially given the increasing threat to biodiversity posed by climate change. Historical demographic processes such as population expansion or bottlenecks and decline are known to exert a predominant influence on past and current levels of genetic diversity, and revealing this demo-genetic history can have immediate conservation implications. We used a whole-exome capture sequencing approach to analyze polymorphism across the gene space of red spruce (Picea rubens Sarg.), an endemic and emblematic tree species of eastern North America high-elevation forests that are facing the combined threat of global warming and increasing human activities. We sampled a total of 340 individuals, including populations from the current core of the range in northeastern USA and southeastern Canada and from the southern portions of its range along the Appalachian Mountains, where populations occur as highly fragmented mountaintop "sky islands." Exome capture baits were designed from the closely relative white spruce (P. glauca Voss) transcriptome, and sequencing successfully captured most regions on or near our target genes, resulting in the generation of a new and expansive genomic resource for studying standing genetic variation in red spruce applicable to its conservation. Our results, based on over 2 million exome-derived variants, indicate that red spruce is structured into three distinct ancestry groups that occupy different geographic regions of its highly fragmented range. Moreover, these groups show small Ne , with a temporal history of sustained population decline that has been ongoing for thousands (or even hundreds of thousands) of years. These results demonstrate the broad potential of genomic studies for revealing details of the demographic history that can inform management and conservation efforts of nonmodel species with active restoration programs, such as red spruce.

13.
Anal Chem ; 92(21): 14501-14508, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32985862

RESUMEN

Extracellular adenosine, produced through the activity of ecto-5'-nucleotidase CD73, elicits potent immunosuppressive effects, and its upregulation in tumor cells as well as in stromal and immune cell subsets within the tumor microenvironment is hypothesized to represent an important resistance mechanism to current cancer immunotherapies. Soluble CD73 (sCD73) enzymatic activity measured in patient serum or plasma at a baseline is reported to have prognostic as well as predictive relevance, with higher sCD73 activity associating with poor overall and progression-free survival in melanoma patients undergoing anti-PD1 monoclonal antibody treatment. Here, we report a novel NMR-based method that measures the ex-vivo kinetics of sCD73 activity with high specificity and reproducibility and is suitable for future high-throughput implementation. Unlike the existing assays, this method has the advantage of directly and simultaneously measuring the concentration of both the CD73 substrate and product with minimal sample manipulation or special reagents. We establish the utility of the assay for measuring the activity of sCD73 in human serum and show a strong linear correlation between sCD73 protein levels and enzyme activity. Together with our finding that sCD73 appears to be the predominant activity for the generation of adenosine in human blood, our results demonstrate a link between activity and protein levels that will inform future clinical application.


Asunto(s)
5'-Nucleotidasa/sangre , 5'-Nucleotidasa/química , Pruebas de Enzimas/métodos , Espectroscopía de Resonancia Magnética , Métodos Analíticos de la Preparación de la Muestra , Tampones (Química) , Humanos , Cinética , Solubilidad
14.
Environ Res Commun ; 2(2): 1-17, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36313933

RESUMEN

A limitation to understanding drivers of long-term trends in terrestrial nitrogen (N) availability in forests and its subsequent influence on stream nitrate export is a general lack of integrated analyses using long-term data on terrestrial and aquatic N cycling at comparable spatial scales. Here we analyze relationships between stream nitrate concentrations and wood δ 15N records (n = 96 trees) across five neighboring headwater catchments in the Blue Ridge physiographic province and within a single catchment in the Appalachian Plateau physiographic province in the eastern United States. Climatic, acidic deposition, and forest disturbance datasets were developed to elucidate the influence of these factors on terrestrial N availability through time. We hypothesized that spatial and temporal variation of terrestrial N availability, for which tree-ring δ 15N records serve as a proxy, affects the variation of stream nitrate concentration across space and time. Across space at the Blue Ridge study sites, stream nitrate concentration increased linearly with increasing catchment mean wood δ 15N. Over time, stream nitrate concentrations decreased with decreasing wood δ 15N in five of the six catchments. Wood δ 15N showed a significant negative relationship with disturbance and acidic deposition. Disturbance likely exacerbated N limitation by inducing nitrate leaching and ultimately enhancing vegetative uptake. As observed elsewhere, lower rates of acidic deposition and subsequent deacidification of soils may increase terrestrial N availability. Despite the ephemeral modifications of terrestrial N availability by these two drivers and climate, long-term declines in terrestrial N availability were robust and have likely driven much of the declines in stream nitrate concentration throughout the central Appalachians.

15.
Mitochondrial DNA B Resour ; 5(4): 3838-3839, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33426295

RESUMEN

The geographic distributions of eastern and western Lasionycteris noctivagans populations suggest they could be genetically isolated, but this has rarely been assessed using genetic data. Here, we evaluate this possibility by sequencing the complete mitochondrial genome of four silver-haired bats from eastern and western populations. The three usable mitogenomes were closely associated with other Vespertilionid bats and the phylogenetic tree revealed the two western individuals grouping together to form their own clade. Our results support the idea of small but significant genetic differences between eastern and western populations of these bats, but this should be tested further.

18.
Environ Sci Technol ; 53(7): 3620-3633, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30830765

RESUMEN

Little is known about the regional extent and variability of nitrate from atmospheric deposition that is transported to streams without biological processing in forests. We measured water chemistry and isotopic tracers (δ18O and δ15N) of nitrate sources across the Northern Forest Region of the U.S. and Canada and reanalyzed data from other studies to determine when, where, and how unprocessed atmospheric nitrate was transported in catchments. These inputs were more widespread and numerous than commonly recognized, but with high spatial and temporal variability. Only 6 of 32 streams had high fractions (>20%) of unprocessed atmospheric nitrate during baseflow. Seventeen had high fractions during stormflow or snowmelt, which corresponded to large fractions in near-surface soil waters or groundwaters, but not deep groundwater. The remaining 10 streams occasionally had some (<20%) unprocessed atmospheric nitrate during stormflow or baseflow. Large, sporadic events may continue to be cryptic due to atmospheric deposition variation among storms and a near complete lack of monitoring for these events. A general lack of observance may bias perceptions of occurrence; sustained monitoring of chronic nitrogen pollution effects on forests with nitrate source apportionments may offer insights needed to advance the science as well as assess regulatory and management schemes.


Asunto(s)
Bosques , Nitratos , Canadá , Monitoreo del Ambiente , Nitrógeno , Ríos
19.
PLoS One ; 14(3): e0212670, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30913212

RESUMEN

Immunotherapy has fundamentally changed the landscape of cancer treatment. Despite the encouraging results with the checkpoint modulators, response rates vary widely across tumor types, with a majority of patients exhibiting either primary resistance without a significant initial response to treatment or acquired resistance with subsequent disease progression. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cell linages and serves as a negative regulator in T cells and dendritic cells (DC). While HPK1 gene knockout (KO) studies suggest its role in anti-tumor immune responses, the involvement of kinase activity and thereof its therapeutic potential remain unknown. To investigate the potential of pharmacological intervention using inhibitors of HPK1, we generated HPK1 kinase dead (KD) mice which carry a single loss-of-function point mutation in the kinase domain and interrogated the role of kinase activity in immune cells in the context of suppressive factors or the tumor microenvironment (TME). Our data provide novel findings that HKP1 kinase activity is critical in conferring suppressive functions of HPK1 in a wide range of immune cells including CD4+, CD8+, DC, NK to Tregs, and inactivation of kinase domain was sufficient to elicit robust anti-tumor immune responses. These data support the concept that an HPK1 small molecule kinase inhibitor could serve as a novel agent to provide additional benefit in combination with existing immunotherapies, particularly to overcome resistance to current treatment regimens.


Asunto(s)
Inmunidad Celular , Vigilancia Inmunológica , Linfocitos/inmunología , Neoplasias Experimentales/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Linfocitos/patología , Ratones , Ratones Mutantes , Neoplasias Experimentales/genética , Mutación Puntual , Proteínas Serina-Treonina Quinasas/genética , Microambiente Tumoral/genética
20.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30629168

RESUMEN

The temporal dynamics of soil bacterial communities are understudied, but such understanding is critical to elucidating the drivers of community variation. The goal of this study was to characterize how soil bacterial communities vary across diurnal, sub-seasonal and seasonal time-scales in a 5.8 m2 plot and test the hypothesis that bacterial diversity varies on each of these scales. We used 16S rDNA gene amplicon sequencing to quantify the alpha and beta diversity of soil bacteria as well as the Net Relatedness Index and Nearest Taxon Indices to assess the degree of phylogenetic clustering, and the extent to which community shifts were driven by stochastic vs. deterministic limitation. We found that species richness was highest in winter, lowest in fall and that communities were compositionally distinct across seasons. There was no evidence of diurnal-scale shifts; the finest temporal scale over which community shifts were detected using our DNA-based analysis was between sampling dates separated by 6 weeks. Phylogenetic analyses suggested that seasonal-scale differences in community composition were the result of environmental filtering and homogeneous selection. Our findings provide insight into temporal variation of soil bacterial communities across the hourly to seasonal scales while minimizing the potential confounding effect of spatial variation.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Microbiología del Suelo , Bacterias/genética , ADN Ribosómico/genética , Bosques , Filogenia , Dinámica Poblacional , ARN Ribosómico 16S/genética , Estaciones del Año , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...