Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 41(2): 304-322.e7, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638784

RESUMEN

Immune checkpoint blockade (ICB) can produce durable responses against cancer. We and others have found that a subset of patients experiences paradoxical rapid cancer progression during immunotherapy. It is poorly understood how tumors can accelerate their progression during ICB. In some preclinical models, ICB causes hyperprogressive disease (HPD). While immune exclusion drives resistance to ICB, counterintuitively, patients with HPD and complete response (CR) following ICB manifest comparable levels of tumor-infiltrating CD8+ T cells and interferon γ (IFNγ) gene signature. Interestingly, patients with HPD but not CR exhibit elevated tumoral fibroblast growth factor 2 (FGF2) and ß-catenin signaling. In animal models, T cell-derived IFNγ promotes tumor FGF2 signaling, thereby suppressing PKM2 activity and decreasing NAD+, resulting in reduction of SIRT1-mediated ß-catenin deacetylation and enhanced ß-catenin acetylation, consequently reprograming tumor stemness. Targeting the IFNγ-PKM2-ß-catenin axis prevents HPD in preclinical models. Thus, the crosstalk of core immunogenic, metabolic, and oncogenic pathways via the IFNγ-PKM2-ß-catenin cascade underlies ICB-associated HPD.


Asunto(s)
Neoplasias , beta Catenina , Animales , Linfocitos T CD8-positivos , Factor 2 de Crecimiento de Fibroblastos , Neoplasias/terapia , Neoplasias/patología , Progresión de la Enfermedad , Interferón gamma , Inmunoterapia/métodos
2.
JCI Insight ; 7(20)2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36099022

RESUMEN

Transforming growth factor-ß1 (TGF-ß1) plays a central role in normal and aberrant wound healing, but the precise mechanism in the local environment remains elusive. Here, using a mouse model of aberrant wound healing resulting in heterotopic ossification (HO) after traumatic injury, we find autocrine TGF-ß1 signaling in macrophages, and not mesenchymal stem/progenitor cells, is critical in HO formation. In-depth single-cell transcriptomic and epigenomic analyses in combination with immunostaining of cells from the injury site demonstrated increased TGF-ß1 signaling in early infiltrating macrophages, with open chromatin regions in TGF-ß1-stimulated genes at binding sites specific for transcription factors of activated TGF-ß1 (SMAD2/3). Genetic deletion of TGF-ß1 receptor type 1 (Tgfbr1; Alk5), in macrophages, resulted in increased HO, with a trend toward decreased tendinous HO. To bypass the effect seen by altering the receptor, we administered a systemic treatment with TGF-ß1/3 ligand trap TGF-ßRII-Fc, which resulted in decreased HO formation and a delay in macrophage infiltration to the injury site. Overall, our data support the role of the TGF-ß1/ALK5 signaling pathway in HO.


Asunto(s)
Osificación Heterotópica , Factor de Crecimiento Transformador beta1 , Humanos , Cromatina/metabolismo , Ligandos , Macrófagos/metabolismo , Osificación Heterotópica/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1/metabolismo , Cicatrización de Heridas , Factor de Crecimiento Transformador beta/metabolismo
3.
Stem Cell Reports ; 16(3): 626-640, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33606989

RESUMEN

Heterotopic ossification (HO) is a form of pathological cell-fate change of mesenchymal stem/precursor cells (MSCs) that occurs following traumatic injury, limiting range of motion in extremities and causing pain. MSCs have been shown to differentiate to form bone; however, their lineage and aberrant processes after trauma are not well understood. Utilizing a well-established mouse HO model and inducible lineage-tracing mouse (Hoxa11-CreERT2;ROSA26-LSL-TdTomato), we found that Hoxa11-lineage cells represent HO progenitors specifically in the zeugopod. Bioinformatic single-cell transcriptomic and epigenomic analyses showed Hoxa11-lineage cells are regionally restricted mesenchymal cells that, after injury, gain the potential to undergo differentiation toward chondrocytes, osteoblasts, and adipocytes. This study identifies Hoxa11-lineage cells as zeugopod-specific ectopic bone progenitors and elucidates the fate specification and multipotency that mesenchymal cells acquire after injury. Furthermore, this highlights homeobox patterning genes as useful tools to trace region-specific progenitors and enable location-specific gene deletion.


Asunto(s)
Huesos/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Madre Mesenquimatosas/metabolismo , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Osteogénesis , Adipocitos/metabolismo , Animales , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Expresión Génica Ectópica , Epigenómica , Femenino , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Osificación Heterotópica/patología , Osteoblastos/metabolismo , Análisis de la Célula Individual , Tendones/metabolismo
4.
J Clin Invest ; 130(10): 5444-5460, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673290

RESUMEN

Cells sense the extracellular environment and mechanical stimuli and translate these signals into intracellular responses through mechanotransduction, which alters cell maintenance, proliferation, and differentiation. Here we use a mouse model of trauma-induced heterotopic ossification (HO) to examine how cell-extrinsic forces impact mesenchymal progenitor cell (MPC) fate. After injury, single-cell (sc) RNA sequencing of the injury site reveals an early increase in MPC genes associated with pathways of cell adhesion and ECM-receptor interactions, and MPC trajectories to cartilage and bone. Immunostaining uncovers active mechanotransduction after injury with increased focal adhesion kinase signaling and nuclear translocation of transcriptional coactivator TAZ, inhibition of which mitigates HO. Similarly, joint immobilization decreases mechanotransductive signaling, and completely inhibits HO. Joint immobilization decreases collagen alignment and increases adipogenesis. Further, scRNA sequencing of the HO site after injury with or without immobilization identifies gene signatures in mobile MPCs correlating with osteogenesis, and signatures from immobile MPCs with adipogenesis. scATAC-seq in these same MPCs confirm that in mobile MPCs, chromatin regions around osteogenic genes are open, whereas in immobile MPCs, regions around adipogenic genes are open. Together these data suggest that joint immobilization after injury results in decreased ECM alignment, altered MPC mechanotransduction, and changes in genomic architecture favoring adipogenesis over osteogenesis, resulting in decreased formation of HO.


Asunto(s)
Extremidades/lesiones , Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/fisiología , Osificación Heterotópica/etiología , Restricción Física , Aciltransferasas , Adipogénesis/genética , Animales , Diferenciación Celular , Linaje de la Célula , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Quinasa 1 de Adhesión Focal/deficiencia , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Masculino , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osificación Heterotópica/patología , Osificación Heterotópica/fisiopatología , Osteogénesis/genética , Restricción Física/efectos adversos , Restricción Física/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA