Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Methods Mol Biol ; 2247: 125-143, 2021.
Article En | MEDLINE | ID: mdl-33301115

Interactions between protein complexes and DNA are central regulators of the cell life. They control the activation and inactivation of a large set of nuclear processes including transcription, replication, recombination, repair, and chromosome structures. In the literature, protein-DNA interactions are characterized by highly complementary approaches including large-scale studies and analyses in cells. Biophysical approaches with purified materials help to evaluate if these interactions are direct or not. They provide quantitative information on the strength and specificity of the interactions between proteins or protein complexes and their DNA substrates. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) are widely used and are complementary methods to characterize nucleo-protein complexes and quantitatively measure protein-DNA interactions. We present here protocols to analyze the interactions between a DNA repair complex, Ku70-Ku80 (Ku) (154 kDa), and DNA substrates. ITC is a label-free method performed with both partners in solution. It serves to determine the dissociation constant (Kd), the enthalpy (ΔH), and the stoichiometry N of an interaction. MST is used to measure the Kd between the protein or the DNA labeled with a fluorescent probe. We report the data obtained on Ku-DNA interactions with ITC and MST and discuss advantages and drawbacks of both the methods.


DNA-Binding Proteins/chemistry , DNA/chemistry , Macromolecular Substances/chemistry , Biochemical Phenomena , Calorimetry , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/metabolism , Models, Molecular , Molecular Conformation , Protein Binding , Structure-Activity Relationship , Thermodynamics
2.
Nat Struct Mol Biol ; 25(10): 971-980, 2018 10.
Article En | MEDLINE | ID: mdl-30291363

The Ku70-Ku80 (Ku) heterodimer binds rapidly and tightly to the ends of DNA double-strand breaks and recruits factors of the non-homologous end-joining (NHEJ) repair pathway through molecular interactions that remain unclear. We have determined crystal structures of the Ku-binding motifs (KBM) of the NHEJ proteins APLF (A-KBM) and XLF (X-KBM) bound to a Ku-DNA complex. The two KBM motifs bind remote sites of the Ku80 α/ß domain. The X-KBM occupies an internal pocket formed by an unprecedented large outward rotation of the Ku80 α/ß domain. We observe independent recruitment of the APLF-interacting protein XRCC4 and of XLF to laser-irradiated sites via binding of A- and X-KBMs, respectively, to Ku80. Finally, we show that mutation of the X-KBM and A-KBM binding sites in Ku80 compromises both the efficiency and accuracy of end joining and cellular radiosensitivity. A- and X-KBMs may represent two initial anchor points to build the intricate interaction network required for NHEJ.


DNA End-Joining Repair , DNA Repair Enzymes/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-Binding Proteins/chemistry , Ku Autoantigen/chemistry , Poly-ADP-Ribose Binding Proteins/chemistry , Conserved Sequence , Crystallography, X-Ray , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/physiology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Humans , Ku Autoantigen/metabolism , Ku Autoantigen/physiology , Models, Molecular , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/physiology , Protein Domains
3.
Cell Rep ; 17(2): 541-555, 2016 10 04.
Article En | MEDLINE | ID: mdl-27705800

In mammalian cells, classical non-homologous end joining (c-NHEJ) is critical for DNA double-strand break repair induced by ionizing radiation and during V(D)J recombination in developing B and T lymphocytes. Recently, PAXX was identified as a c-NHEJ core component. We report here that PAXX-deficient cells exhibit a cellular phenotype uncharacteristic of a deficiency in c-NHEJ core components. PAXX-deficient cells display normal sensitivity to radiomimetic drugs, are proficient in transient V(D)J recombination assays, and do not shift toward higher micro-homology usage in plasmid repair assays. Although PAXX-deficient cells lack c-NHEJ phenotypes, PAXX forms a stable ternary complex with Ku bound to DNA. Formation of this complex involves an interaction with Ku70 and requires a bare DNA extension for stability. Moreover, the relatively weak Ku-dependent stimulation of LIG4/XRCC4 activity by PAXX is unmasked by XLF ablation. Thus, PAXX plays an accessory role during c-NHEJ that is largely overlapped by XLF's function.


DNA End-Joining Repair/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Ku Autoantigen/genetics , B-Lymphocytes/metabolism , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , HCT116 Cells , Humans , Ku Autoantigen/chemistry , Ku Autoantigen/metabolism , T-Lymphocytes/metabolism , V(D)J Recombination/genetics
...